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ABSTRACT Sparse representation has attracted much attention from researchers in fields of signal
processing, image processing, computer vision, and pattern recognition. Sparse representation also has a
good reputation in both theoretical research and practical applications. Many different algorithms have been
proposed for sparse representation. The main purpose of this paper is to provide a comprehensive study
and an updated review on sparse representation and to supply guidance for researchers. The taxonomy of
sparse representation methods can be studied from various viewpoints. For example, in terms of different
norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups:
1) sparse representation with l0-norm minimization; 2) sparse representation with lp-norm (0 < p < 1)
minimization; 3) sparse representation with l1-norm minimization; 4) sparse representation with l2,1-norm
minimization; and 5) sparse representation with l2-norm minimization. In this paper, a comprehensive
overview of sparse representation is provided. The available sparse representation algorithms can also be
empirically categorized into four groups: 1) greedy strategy approximation; 2) constrained optimization;
3) proximity algorithm-based optimization; and 4) homotopy algorithm-based sparse representation. The
rationales of different algorithms in each category are analyzed and a wide range of sparse representation
applications are summarized, which could sufficiently reveal the potential nature of the sparse representation
theory. In particular, an experimentally comparative study of these sparse representation algorithms was
presented.

INDEX TERMS Sparse representation, compressive sensing, greedy algorithm, constrained optimization,
proximal algorithm, homotopy algorithm, dictionary learning.

I. INTRODUCTION
With advancements in mathematics, linear representation
methods (LRBM) have been well studied and have recently
received considerable attention [1], [2]. The sparse represen-
tation method is the most representative methodology of the
LRBM and has also been proven to be an extraordinary
powerful solution to a wide range of application fields,
especially in signal processing, image processing, machine
learning, and computer vision, such as image denoising,

debluring, inpainting, image restoration, super-resolution,
visual tracking, image classification and image segmen-
tation [3]–[10]. Sparse representation has shown huge
potential capabilities in handling these problems.

Sparse representation, from the viewpoint of its origin, is
directly related to compressed sensing (CS) [11]–[13], which
is one of the most popular topics in recent years. Donoho [11]
first proposed the original concept of compressed sensing.
CS theory suggests that if a signal is sparse or compressive,
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the original signal can be reconstructed by exploiting a few
measured values, which are much less than the ones
suggested by previously used theories such as Shannon’s
sampling theorem (SST). Candès et al. [13], from the mathe-
matical perspective, demonstrated the rationale of CS theory,
i.e. the original signal could be precisely reconstructed by
utilizing a small portion of Fourier transformation
coefficients. Baraniuk [12] provided a concrete analysis of
compressed sensing and presented a specific interpretation on
some solutions of different signal reconstruction algorithms.
All these literature [11]–[17] laid the foundation of
CS theory and provided the theoretical basis for future
research. Thus, a large number of algorithms based on
CS theory have been proposed to address different problems
in various fields. Moreover, CS theory always includes the
three basic components: sparse representation, encoding
measuring, and reconstructing algorithm. As an indispens-
able prerequisite of CS theory, the sparse representation
theory [4], [7]–[10], [17] is the most outstanding technique
used to conquer difficulties that appear in many fields.
For example, the methodology of sparse representation is
a novel signal sampling method for the sparse or com-
pressible signal and has been successfully applied to signal
processing [4]–[6].

Sparse representation has attracted much attention in
recent years and many examples in different fields can be
found where sparse representation is definitely beneficial and
favorable [18], [19]. One example is image classification,
where the basic goal is to classify the given test image into
several predefined categories. It has been demonstrated that
natural images can be sparsely represented from the perspec-
tive of the properties of visual neurons. The sparse represen-
tation based classification (SRC) method [20] first assumes
that the test sample can be sufficiently represented by samples
from the same subject. Specifically, SRC exploits the linear
combination of training samples to represent the test sample
and computes sparse representation coefficients of the linear
representation system, and then calculates the reconstruction
residuals of each class employing the sparse representation
coefficients and training samples. The test sample will be
classified as a member of the class, which leads to the
minimum reconstruction residual. The literature [20] has also
demonstrated that the SRC method has great superiorities
when addressing the image classification issue on corrupted
or disguised images. In such cases, each natural image can be
sparsely represented and the sparse representation theory can
be utilized to fulfill the image classification task.

For signal processing, one important task is to extract key
components from a large number of clutter signals or groups
of complex signals in coordination with different
requirements. Before the appearance of sparse representation,
SST and Nyquist sampling law (NSL) were the traditional
methods for signal acquisition and the general procedures
included sampling, coding compression, transmission, and
decoding. Under the frameworks of SST and NSL, the
greatest difficulty of signal processing lies in efficient

sampling from mass data with sufficient memory-saving.
In such a case, sparse representation theory can simultane-
ously break the bottleneck of conventional sampling rules,
i.e. SST and NSL, so that it has a very wide application
prospect. Sparse representation theory proposes to integrate
the processes of signal sampling and coding compression.
Especially, sparse representation theory employs a more
efficient sampling rate to measure the original sample by
abandoning the pristine measurements of SST and NSL, and
then adopts an optimal reconstruction algorithm to recon-
struct samples. In the context of compressed sensing, it is
first assumed that all the signals are sparse or approximately
sparse enough [4], [6], [7]. Compared to the primary signal
space, the size of the set of possible signals can be largely
decreased under the constraint of sparsity. Thus, massive
algorithms based on the sparse representation theory have
been proposed to effectively tackle signal processing issues
such as signal reconstruction and recovery. To this end, the
sparse representation technique can save a significant amount
of sampling time and sample storage space and it is favorable
and advantageous.

A. CATEGORIZATION OF SPARSE
REPRESENTATION TECHNIQUES
Sparse representation theory can be categorized from
different viewpoints. Because different methods have their
individual motivations, ideas, and concerns, there are
varieties of strategies to separate the existing sparse represen-
tation methods into different categories from the perspective
of taxonomy. For example, from the viewpoint of ‘‘atoms’’,
available sparse representation methods can be categorized
into two general groups: naive sample based sparse
representation and dictionary learning based sparse repre-
sentation. However, on the basis of the availability of labels
of ‘‘atoms’’, sparse representation and learning methods can
be coarsely divided into three groups: supervised learning,
semi-supervised learning, and unsupervised learning
methods. Because of the sparse constraint, sparse representa-
tion methods can be divided into two communities: structure
constraint based sparse representation and sparse constraint
based sparse representation. Moreover, in the field of image
classification, the representation based classification
methods consist of two main categories in terms of the way
of exploiting the ‘‘atoms’’: the holistic representation based
method and local representation based method [21]. More
specifically, holistic representation based methods exploit
training samples of all classes to represent the test sample,
whereas local representation based methods only employ
training samples (or atoms) of each class or several classes to
represent the test sample. Most of the sparse representation
methods are holistic representation based methods. A typical
and representative local sparse representation methods is the
two-phase test sample sparse representation (TPTSR)
method [9]. In consideration of different methodologies,
the sparse representation method can be grouped into
two aspects: pure sparse representation and hybrid
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sparse representation, which improves the pre-existing sparse
representation methods with the aid of other methods. The
literature [23] suggests that sparse representation algorithms
roughly fall into three classes: convex relaxation,
greedy algorithms, and combinational methods. In the
literature [24], [25], from the perspective of sparse
problem modeling and problem solving, sparse decompo-
sition algorithms are generally divided into two sections:
greedy algorithms and convex relaxation algorithms. On the
other hand, if the viewpoint of optimization is taken into
consideration, the problems of sparse representation can be
divided into four optimization problems: the smooth convex
problem, nonsmooth nonconvex problem, smooth noncon-
vex problem, and nonsmooth convex problem. Furthermore,
Schmidt et al. [26] reviewed some optimization techniques
for solving l1-norm regularization problems and roughly
divided these approaches into three optimization strategies:
sub-gradient methods, unconstrained approximation
methods, and constrained optimization methods. The supple-
mentary file attached with the paper also offers more useful
information to make fully understandings of the ‘taxonomy’
of current sparse representation techniques in this paper.

In this paper, the available sparse representation methods
are categorized into four groups, i.e. the greedy strategy
approximation, constrained optimization strategy, proximity
algorithm based optimization strategy, and homotopy
algorithm based sparse representation, with respect to the
analytical solution and optimization viewpoints.

(1) In the greedy strategy approximation for solving sparse
representation problem, the target task is mainly to solve
the sparse representation method with l0-norm minimiza-
tion. Because of the fact that this problem is an NP-hard
problem [27], the greedy strategy provides an approximate
solution to alleviate this difficulty. The greedy strategy
searches for the best local optimal solution in each iteration
with the goal of achieving the optimal holistic solution [28].
For the sparse representation method, the greedy strategy
approximation only chooses the most k appropriate samples,
which are called k-sparsity, to approximate the measurement
vector.

(2) In the constrained optimization strategy, the core idea
is to explore a suitable way to transform a non-differentiable
optimization problem into a differentiable optimization
problem by replacing the l1-norm minimization term, which
is convex but nonsmooth, with a differentiable optimiza-
tion term, which is convex and smooth. More specifically,
the constrained optimization strategy substitutes the l1-norm
minimization term with an equal constraint condition on the
original unconstraint problem. If the original unconstraint
problem is reformulated into a differentiable problem with
constraint conditions, it will become an uncomplicated
problem in the consideration of the fact that l1-norm
minimization is global non-differentiable.

(3) Proximal algorithms can be treated as a powerful
tool for solving nonsmooth, constrained, large-scale, or
distributed versions of the optimization problem [29]. In the

proximity algorithm based optimization strategy for sparse
representation, the main task is to reformulate the original
problem into the specific model of the corresponding prox-
imal operator such as the soft thresholding operator, hard
thresholding operator, and resolvent operator, and then
exploits the proximity algorithms to address the original
sparse optimization problem.

(4) The general framework of the homotopy algorithm is
to iteratively trace the final desired solution starting from
the initial point to the optimal point by successively adjust-
ing the homotopy parameter [30]. In homotopy algorithm
based sparse representation, the homotopy algorithm is used
to solve the l1-norm minimization problem with k-sparse
property.

B. MOTIVATION AND OBJECTIVES
In this paper, a survey on sparse representation and overview
available sparse representation algorithms from viewpoints
of the mathematical and theoretical optimization is provided.
This paper is designed to provide foundations of the study
on sparse representation and aims to give a good start to
newcomers in computer vision and pattern recognition
communities, who are interested in sparse representation
methodology and its related fields. Extensive state-of-art
sparse representation methods are summarized and the ideas,
algorithms, andwide applications of sparse representation are
comprehensively presented. Specifically, there is concentra-
tion on introducing an up-to-date review of the existing litera-
ture and presenting some insights into the studies of the latest
sparse representation methods. Moreover, the existing sparse
representation methods are divided into different categories.
Subsequently, corresponding typical algorithms in different
categories are presented and their distinctness is explicitly
shown. Finally, the wide applications of these sparse repre-
sentation methods in different fields are introduced.

The remainder of this paper is mainly composed of
four parts: basic concepts and frameworks are shown
in Section II and Section III, representative algorithms are
presented in Section IV-VII and extensive applications are
illustrated in Section VIII, massive experimental evaluations
are summarized in Section IX. More specifically, the funda-
mentals and preliminary mathematic concepts are presented
in Section II, and then the general frameworks of the existing
sparse representation with different norm regularizations are
summarized in Section III. In Section IV, the greedy strategy
approximation method is presented for obtaining a sparse
representation solution, and in Section V, the constrained
optimization strategy is introduced for solving the sparse
representation issue. Furthermore, the proximity algorithm
based optimization strategy and Homotopy strategy for
addressing the sparse representation problem are outlined
in Section VI and Section VII, respectively. Section VIII
presents extensive applications of sparse representation in
widespread and prevalent fields including dictionary learn-
ing methods and real-world applications. Finally, Section IX
offers massive experimental evaluations and conclusions are
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FIGURE 1. The structure of this paper. The main body of this paper mainly consists of four parts: basic concepts and frameworks in Section II-III,
representative algorithms in Section IV-VII and extensive applications in Section VIII, massive experimental evaluations in Section IX. Conclusion is
summarized in Section X.

drawn and summarized in Section X. The structure of the this
paper has been summarized in Fig. 1.

II. FUNDAMENTALS AND PRELIMINARY CONCEPTS
A. NOTATIONS
In this paper, vectors are denoted by lowercase letters with
bold face, e.g. x. Matrices are denoted by uppercase letter,
e.g. X and their elements are denoted with indexes such as Xi.
In this paper, all the data are only real-valued.

Suppose that the sample is from space Rd and thus all
the samples are concatenated to form a matrix, denoted
asD ∈ Rd×n. If any sample can be approximately represented
by a linear combination of dictionaryD and the number of the
samples is larger than the dimension of samples in D,
i.e. n > d , dictionary D is referred to as an over-complete
dictionary. A signal is said to be compressible if it is a
sparse signal in the original or transformed domain when
there is no information or energy loss during the process of
transformation.

‘‘sparse’’ or ‘‘sparsity’’ of a vector means that some
elements of the vector are zero. We use a linear combination
of a basis matrix A ∈ RN×N to represent a signal x ∈ RN×1,
i.e. x = Aswhere s ∈ RN×1 is the column vector of weighting
coefficients. If only k (k � N ) elements of s are nonzero and
the rest elements in s are zero, we call the signal x is k-sparse.

B. BASIC BACKGROUND
The standard inner product of two vectors, x and y from the
set of real n dimensions, is defined as

〈x, y〉 = xT y = x1y1 + x2y2 + · · · + xnyn (II.1)

The standard inner product of two matrixes,
X ∈ Rm×n and Y ∈ Rm×n from the set of realm×nmatrixes,
is denoted as the following equation

〈X ,Y 〉 = tr(XTY ) =
m∑
i=1

n∑
j=1

XijYij (II.2)

where the operator tr(A) denotes the trace of the matrix A,
i.e. the sum of its diagonal entries.
Suppose that v = [v1, v2, · · · , vn] is an n dimensional

vector in Euclidean space, thus

‖v‖p = (
n∑
i=1

|vi|p)1/p (II.3)

is denoted as the p-norm or the lp-norm (1 ≤ p ≤ ∞) of
vector v.

When p=1, it is called the l1-norm. It means the sum of
absolute values of the elements in vector v, and its geometric
interpretation is shown in Fig. 2b, which is a square with a
forty-five degree rotation.

When p=2, it is called the l2-norm or Euclidean norm. It is
defined as ‖v‖2 = (v21 + v

2
2 + · · · + v

2
n)

1/2, and its geometric
interpretation in 2-D space is shown in Fig. 2c which is a
circle.

In the literature, the sparsity of a vector v is always related
to the so-called l0-norm, which means the number of the
nonzero elements of vector v. Actually, the l0-norm is the
limit as p → 0 of the lp-norms [8] and the definition of
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FIGURE 2. Geometric interpretations of different norms in 2-D space [7]. (a), (b), (c), (d) are the unit ball of the
l0-norm, l1-norm, l2-norm, lp-norm (0<p<1) in 2-D space, respectively. The two axes of the above coordinate
systems are x1 and x2.

the l0-norm is formulated as

‖v‖0 = lim
p→0
‖v‖pp = lim

p→0

n∑
i=1

|vi|p (II.4)

We can see that the notion of the l0-norm is very convenient
and intuitive for defining the sparse representation problem.
The property of the l0-norm can also be presented from the
perspective of geometric interpretation in 2-D space, which
is shown in Fig. 2a, and it is a crisscross.

Furthermore, the geometric meaning of the lp-norm
(0<p<1) is also presented, which is a form of similar
recessed pentacle shown in Fig. 2d.

On the other hand, it is assumed that f (x) is the function
of the lp-norm (p>0) on the parameter vector x, and then the
following function is obtained:

f (x) = ‖x‖pp = (
n∑
i=1

|xi|p) (II.5)

The relationships between different norms are summarized
in Fig. 3. From the illustration in Fig. 3, the conclusions are
as follows. The l0-norm function is a nonconvex, nonsmooth,
discontinuity, global nondifferentiable function. The
lp-norm (0<p<1) is a nonconvex, nonsmooth, global

FIGURE 3. Geometric interpretations of different norms in 1-D space [7].

nondifferentiable function. The l1-norm function is a convex,
nonsmooth, global nondifferentiable function. The l2-norm
function is a convex, smooth, global differentiable function.

In order to more specifically elucidate the meaning and
solutions of different norm minimizations, the geometry in
2-D space is used to explicitly illustrate the solutions of the
l0-norm minimization in Fig. 4a, l1-norm minimization
in Fig. 4b, and l2-normminimization in Fig. 4c. Let S = {x∗ :
Ax = y} denote the line in 2-D space and a hyperplane will
be formulated in higher dimensions. All possible solution x∗

must lie on the line of S. In order to visualize how to obtain
the solution of different norm-based minimization problems,
we take the l1-norm minimization problem as an example to
explicitly interpret. Suppose that we inflate the l1-ball from
an original status until it hits the hyperplane S at some point.
Thus, the solution of the l1-norm minimization problem is
the aforementioned touched point. If the sparse solution of
the linear system is localized on the coordinate axis, it will
be sparse enough. From the perspective of Fig. 4, it can be
seen that the solutions of both the l0-norm and l1-norm
minimization are sparse, whereas for the l2-norm
minimization, it is very difficult to rigidly satisfy the
condition of sparsity. However, it has been demonstrated that
the representation solution of the l2-normminimization is not
strictly sparse enough but ‘‘limitedly-sparse’’, which means
it possesses the capability of discriminability [31].

The Frobenius norm, L1-norm of matrix X ∈ Rm×n, and
l2-norm or spectral norm are respectively defined as

‖X‖F = (
n∑
i=1

m∑
j=1

X2
j,i)

1/2, ‖X‖L1 =
n∑
i=1

m∑
j=1

|xj,i|,

‖X‖2 = δmax(X ) = (λmax(XTX ))1/2 (II.6)

where δ is the singular value operator and the l2-norm of X is
its maximum singular value [32].

The l2,1-norm or R1-norm is defined on matrix term, that is

‖X‖2,1 =
n∑
i=1

(
m∑
j=1

X2
j,i)

1/2 (II.7)

As shown above, a norm can be viewed as a measure of
the length of a vector v. The distance between two vectors
x and y, or matrices X and Y , can be measured by the length
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of their differences, i.e.

dist(x, y) = ‖x− y‖22, dist(X ,Y ) = ‖X − Y‖F (II.8)

which are denoted as the distance between x and y in the
context of the l2-norm and the distance between X and Y in
the context of the Frobenius norm, respectively.

Assume that X ∈ Rm×n and the rank of X ,
i.e. rank(X ) = r . The SVD of X is computed as

X = U3V T (II.9)

where U ∈ Rm×r with UTU = I and V ∈ Rn×r with
V TV = I . The columns of U and V are called left and
right singular vectors of X , respectively. Additionally, 3 is a
diagonal matrix and its elements are composed of the singular
values of X , i.e. 3 = diag(λ1, λ2, · · · , λr ) with
λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Furthermore, the singular value
decomposition can be rewritten as

X =
r∑
i=1

λiuivi (II.10)

where λi, ui and vi are the i-th singular value, the i-th column
of U , and the i-th column of V , respectively [32].

III. SPARSE REPRESENTATION PROBLEM WITH
DIFFERENT NORM REGULARIZATIONS
In this section, sparse representation is summarized and
grouped into different categories in terms of the norm
regularizations used. The general framework of sparse repre-
sentation is to exploit the linear combination of some samples
or ‘‘atoms’’ to represent the probe sample, to calculate the
representation solution, i.e. the representation coefficients of
these samples or ‘‘atoms’’, and then to utilize the
representation solution to reconstruct the desired results.
The representation results in sparse representation, however,
can be greatly dominated by the regularizer (or optimizer)
imposed on the representation solution [33]–[36]. Thus,
in terms of the different norms used in optimizers, the
sparse representation methods can be roughly grouped into
five general categories: sparse representation with the
l0-norm minimization [37], [38], sparse representation
with the lp-norm (0<p<1) minimization [39]–[41], sparse
representation with the l1-norm minimization [42]–[45],
sparse representation with the l2,1-norm minimiz-
ation [46]–[50], sparse representation with the l2-norm
minimization [9], [22], [51].

A. SPARSE REPRESENTATION WITH
l0-NORM MINIMIZATION
Let x1, x2, · · · , xn ∈ Rd be all the n known samples and
matrix X ∈ Rd×n (d<n), which is constructed by known
samples, is the measurement matrix or the basis dictionary
and should also be an over-completed dictionary. Each
column of X is one sample and the probe sample is y ∈ Rd ,
which is a column vector. Thus, if all the known samples are

used to approximately represent the probe sample, it should
be expressed as:

y = x1α1 + x2α2 + · · · + xnαn (III.1)

where αi (i = 1, 2, · · · , n) is the coefficient of xi and Eq. III.1
can be rewritten into the following equation for convenient
description:

y = Xα (III.2)

where matrix X=[x1, x2, · · · , xn] and α=[α1,α2, · · · ,αn]T.
However, problem III.2 is an underdetermined linear

system of equations and the main problem is how to solve it.
From the viewpoint of linear algebra, if there is not any prior
knowledge or any constraint imposed on the representation
solution α, problem III.2 is an ill-posed problem and will
never have a unique solution. That is, it is impossible to utilize
equation III.2 to uniquely represent the probe sample y using
the measurement matrix X . To alleviate this difficulty, it is
feasible to impose an appropriate regularizer constraint or
regularizer function on representation solution α. The sparse
representation method demands that the obtained represen-
tation solution should be sparse. Hereafter, the meaning of
‘sparse’ or ‘sparsity’ refers to the condition that when the
linear combination of measurement matrix is exploited to
represent the probe sample, many of the coefficients should
be zero or very close to zero and few of the entries in the
representation solution are differentially large.

The sparsest representation solution can be acquired
by solving the linear representation system III.2 with the
l0-normminimization constraint [52]. Thus problem III.2 can
be converted to the following optimization problem:

α̂ = argmin ‖α‖0 s.t. y = Xα (III.3)

where ‖ · ‖0 refers to the number of nonzero elements in the
vector and is also viewed as the measure of sparsity. More-
over, if just k (k < n) atoms from the measurement matrix X
are utilized to represent the probe sample, problem III.3 will
be equivalent to the following optimization problem:

y = Xα s.t. ‖α‖0 ≤ k (III.4)

Problem III.4 is called the k-sparse approximation problem.
Because real data always contains noise, representation noise
is unavoidable in most cases. Thus the original model III.2
can be revised to a modified model with respect to small
possible noise by denoting

y = Xα + s (III.5)

where s ∈ Rd refers to representation noise and is bounded
as ‖s‖2 ≤ ε. With the presence of noise, the sparse solutions
of problems III.3 and III.4 can be approximately obtained by
resolving the following optimization problems:

α̂ = argmin ‖α‖0 s.t. ‖y− Xα‖22 ≤ ε (III.6)

or

α̂ = argmin ‖y− Xα‖22 s.t. ‖α‖0 ≤ ε (III.7)
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FIGURE 4. The geometry of the solutions of different norm regularization in 2-D space [7]. (a), (b) and (c) are the geometry of the solutions
of the l0-norm, l1-norm, l2-norm minimization, respectively.

Furthermore, according to the Lagrange multiplier theorem,
a proper constant λ exists such that problems III.6 and III.7
are equivalent to the following unconstrained minimization
problem with a proper value of λ.

α̂ = L(α, λ) = argmin ‖y− Xα‖22 + λ‖α‖0 (III.8)

where λ refers to the Lagrange multiplier associated
with ‖α‖0.

B. SPARSE REPRESENTATION WITH
l1-NORM MINIMIZATION
The l1-norm originates from the Lasso problem [42], [43]
and it has been extensively used to address issues in machine
learning, pattern recognition, and statistics [53]–[55].
Although the sparse representation method with l0-norm
minimization can obtain the fundamental sparse solution
of α over thematrixX , the problem is still a non-deterministic
polynomial-time hard (NP-hard) problem and the solution is
difficult to approximate [27]. Recent literature [20], [56]–[58]
has demonstrated that when the representation solution
obtained by using the l1-norm minimization constraint is
also content with the condition of sparsity and the solution
using l1-norm minimization with sufficient sparsity can be
equivalent to the solution obtained by l0-norm minimization
with full probability. Moreover, the l1-norm optimization
problem has an analytical solution and can be solved in
polynomial time. Thus, extensive sparse representation
methods with the l1-norm minimization have been proposed
to enrich the sparse representation theory. The applications
of sparse representation with the l1-norm minimization are
extraordinarily and remarkably widespread. Correspond-
ingly, the main popular structures of sparse representation
with the l1-norm minimization, similar to sparse representa-
tion with l0-norm minimization, are generally used to solve
the following problems:

α̂ = argmin
α
‖α‖1 s.t. y = Xα (III.9)

α̂ = argmin
α
‖α‖1 s.t. ‖y− Xα‖22 ≤ ε (III.10)

or

α̂ = argmin
α
‖y− Xα‖22 s.t. ‖α‖1 ≤ τ (III.11)

α̂ = L(α, λ) = argmin
α

1
2
‖y− Xα‖22 + λ‖α‖1 (III.12)

where λ and τ are both small positive constants.

C. SPARSE REPRESENTATION WITH
lp-NORM (0 < p < 1) MINIMIZATION
The general sparse representation method is to solve a linear
representation system with the lp-norm minimization
problem. In addition to the l0-norm minimization and
l1-norm minimization, some researchers are trying to solve
the sparse representation problem with the lp-norm (0<p<1)
minimization, especially p = 0.1, 1

2 ,
1
3 , or 0.9 [59]–[61].

That is, the sparse representation problem with the lp-norm
(0<p<1) minimization is to solve the following problem:

α̂ = argmin
α
‖α‖pp s.t. ‖y− Xα‖22 ≤ ε (III.13)

or

α̂ = L(α, λ) = argmin
α
‖y− Xα‖22 + λ‖α‖

p
p (III.14)

In spite of the fact that sparse representation methods with the
lp-norm (0<p<1) minimization are not the mainstream
methods to obtain the sparse representation solution,
it tremendously influences the improvements of the sparse
representation theory.

D. SPARSE REPRESENTATION WITH l2-NORM
AND l2,1-NORM MINIMIZATION
The representation solution obtained by the l2-norm
minimization is not rigorously sparse. It can only obtain a
‘limitedly-sparse’ representation solution, i.e. the solution
has the property that it is discriminative and distinguishable
but is not really sparse enough [31]. The objective function
of the sparse representation method with the l2-norm
minimization is to solve the following problem:

α̂ = argmin
α
‖α‖22 s.t. ‖y− Xα‖22 ≤ ε (III.15)
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or

α̂ = L(α, λ) = argmin
α
‖y− Xα‖22 + λ‖α‖

2
2 (III.16)

On the other hand, the l2,1-norm is also called the rotation
invariant l1-norm, which is proposed to overcome the
difficulty of robustness to outliers [62]. The objective
function of the sparse representation problem with the
l2,1-norm minimization is to solve the following problem:

argmin
A
‖Y − XA‖2,1 + µ‖A‖2,1 (III.17)

where Y = [y1, y2, · · · , yN ] refers to the matrix composed
of samples, A = [a1, a2, · · · , aN ] is the corresponding
coefficient matrix of X , and µ is a small positive constant.
Sparse representation with the l2,1-norm minimization can
be implemented by exploiting the proposed algorithms in
literature [46]–[48].

IV. GREEDY STRATEGY APPROXIMATION
Greedy algorithms date back to the 1950s. The core idea of
the greedy strategy [7], [24] is to determine the position based
on the relationship between the atom and probe sample, and
then to use the least square to evaluate the amplitude value.
Greedy algorithms can obtain the local optimized solution
in each step in order to address the problem. However, the
greedy algorithm can always produce the global optimal
solution or an approximate overall solution [7], [24].
Addressing sparse representation with l0-norm regulariza-
tion, i.e. problem III.3, is an NP hard problem [20], [56].
The greedy strategy provides a special way to obtain an
approximate sparse representation solution. The greedy strat-
egy actually can not directly solve the optimization problem
and it only seeks an approximate solution for problem III.3.

A. MATCHING PURSUIT ALGORITHM
The matching pursuit (MP) algorithm [63] is the earliest
and representative method of using the greedy strategy to
approximate problem III.3 or III.4. The main idea of the
MP is to iteratively choose the best atom from the dictionary
based on a certain similarity measurement to approximately
obtain the sparse solution. Taking as an example of the sparse
decomposition with a vector sample y over the over-complete
dictionary D, the detailed algorithm description is presented
as follows:

Suppose that the initialized representation residual is
R0 = y, D = [d1, d2, · · · , dN ] ∈ Rd×N and each sample
in dictionary D is an l2-norm unity vector, i.e. ‖d i‖ = 1.
To approximate y, MP first chooses the best matching atom
from D and the selected atom should satisfy the following
condition:

|〈R0, d l0〉| = sup|〈R0, d i〉| (IV.1)

where l0 is a label index from dictionary D. Thus y can be
decomposed into the following equation:

y = 〈y, d l0〉d l0 + R1 (IV.2)

So y = 〈R0, d l0〉d l0 + R1 where 〈R0, d l0〉d l0 represents the
orthogonal projection of y onto d l0 , and R1 is the representa-
tion residual by using d l0 to represent y. Considering the fact
that d l0 is orthogonal to R1, Eq. IV.2 can be rewritten as

‖y‖2 = |〈y, d l0〉|
2
+ ‖R1‖

2 (IV.3)

To obtain the minimum representation residual, the
MP algorithm iteratively figures out the best matching atom
from the over-completed dictionary, and then utilizes the
representation residual as the next approximation target until
the termination condition of iteration is satisfied. For the t-th
iteration, the best matching atom is d lt and the approximation
result is found from the following equation:

Rt = 〈Rt , d lt 〉d lt + Rt+1 (IV.4)

where the d lt satisfies the equation:

|〈Rt , d lt 〉| = sup|〈Rt , d i〉| (IV.5)

Clearly, d lt is orthogonal to Rk+1, and then

‖Rk‖2 = |〈Rt , d lt 〉|
2
+ ‖Rt+1‖2 (IV.6)

For the n-th iteration, the representation residual
‖Rn‖2 ≤ τ where τ is a very small constant and the probe
sample y can be formulated as:

y =
n−1∑
j=1

〈Rj, d lj〉d lj + Rn (IV.7)

If the representation residual is small enough, the probe
sample y can approximately satisfy the following equation:
y ≈

∑n−1
j=1 〈Rj, d lj〉d lj where n� N . Thus, the probe sample

can be represented by a small number of elements from a large
dictionary. In the context of the specific representation error,
the termination condition of sparse representation is that the
representation residual is smaller than the presupposed value.
More detailed analysis on matching pursuit algorithms can be
found in the literature [63].

B. ORTHOGONAL MATCHING PURSUIT ALGORITHM
The orthogonal matching pursuit (OMP) algorithm [37], [64]
is an improvement of the MP algorithm. The OMP employs
the process of orthogonalization to guarantee the orthogonal
direction of projection in each iteration. It has been verified
that the OMP algorithm can be converged in limited
iterations [37]. The main steps of OMP algorithm have been
summarized in Algorithm 1.

C. SERIES OF MATCHING PURSUIT ALGORITHMS
It is an excellent choice to employ the greedy strategy to
approximate the solution of sparse representation with the
l0-norm minimization. These algorithms are typical greedy
iterative algorithms. The earliest algorithms were the
matching pursuit (MP) and orthogonal matching
pursuit (OMP). The basic idea of theMP algorithm is to select
the best matching atom from the overcomplete dictionary
to construct sparse approximation during each iteration,
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Algorithm 1 Orthogonal Matching Pursuit Algorithm
Task: Approximate the constraint problem:

α̂ = argminα ‖α‖0 s.t. y = Xα
Input: Probe sample y, measurement matrix X , sparse
coefficients vector α
Initialization: t = 1, r0 = y, α = 0, D0 = φ, index set
30 = φ where φ denotes empty set, τ is a small constant.
While ‖rt‖ > τ do
Step 1: Find the best matching sample, i.e. the biggest

inner product between rt−1 and xj (j 6∈ 3t−1)
by exploiting λt = argmaxj 6∈3t−1 |〈rt−1, xj〉|.

Step 2: Update the index set 3t = 3t−1
⋃
λt and

reconstruct data set Dt = [Dt−1, xλt ].
Step 3: Compute the sparse coefficient by using the least

square algorithm α̃ = argmin ‖y− Dt α̃‖22.
Step 4: Update the representation residual using

rt = y− Dt α̃.
Step 5: t = t + 1.

End
Output: D, α

to compute the signal representation residual, and then to
choose the best matching atom till the stopping criterion of
iteration is satisfied. Many more greedy algorithms based on
the MP and OMP algorithm such as the efficient orthogonal
matching pursuit algorithm [65] subsequently have been
proposed to improve the pursuit algorithm. Needell et al.
proposed an regularized version of orthogonal matching
pursuit (ROMP) algorithm [38], which recovered all k sparse
signals based on the Restricted Isometry Property of random
frequency measurements, and then proposed another variant
of OMP algorithm called compressive sampling matching
pursuit (CoSaMP) algorithm [66], which incorporated several
existing ideas such as restricted isometry property (RIP) and
pruning technique into a greedy iterative structure of OMP.
Some other algorithms also had an impressive influence on
future research on CS. For example, Donoho et al. pro-
posed an extension of OMP, called stage-wise orthogonal
matching pursuit (StOMP) algorithm [67], which depicted
an iterative algorithm with three main steps, i.e. threholding,
selecting and projecting. Dai and Milenkovic proposed a
new method for sparse signal reconstruction named subspace
pursuit (SP) algorithm [68], which sampled signals satisfy-
ing the constraints of the RIP with a constant parameter.
Do et al. presented a sparsity adaptive matching pur-
suit (SAMP) algorithm [69], which borrowed the idea of
the EM algorithm to alternatively estimate the sparsity and
support set. Jost et al. proposed a tree-based matching pur-
suit (TMP) algorithm [70], which constructed a tree structure
and employed a structuring strategy to cluster similar signal
atoms from a highly redundant dictionary as a new dictionary.
Subsequently, La and Do proposed a new tree-based orthog-
onal matching pursuit (TBOMP) algorithm [71], which
treated the sparse tree representation as an additional prior

knowledge for linear inverse systems by using a small
number of samples. Recently, Karahanoglu and Erdogan
conceived a forward-backward pursuit (FBP) method [72]
with two greedy stages, in which the forward stage enlarged
the support estimation and the backward stage removed
some unsatisfied atoms. More detailed treatments of the
greedy pursuit for sparse representation can be found in the
literature [24].

V. CONSTRAINED OPTIMIZATION STRATEGY
Constrained optimization strategy is always utilized to obtain
the solution of sparse representation with the l1-norm regu-
larization. The methods that address the non-differentiable
unconstrained problem will be presented by reformulating it
as a smooth differentiable constrained optimization problem.
These methods exploit the constrained optimization method
with efficient convergence to obtain the sparse solution.What
is more, the constrained optimization strategy emphasizes
the equivalent transformation of ‖α‖1 in problem III.12 and
employs the new reformulated constrained problem to obtain
a sparse representation solution. Some typical methods that
employ the constrained optimization strategy to solve the
original unconstrained non-smooth problem are introduced in
this section.

A. GRADIENT PROJECTION SPARSE RECONSTRUCTION
The core idea of the gradient projection sparse representation
method is to find the sparse representation solution alongwith
the gradient descent direction. The first key procedure of
gradient projection sparse reconstruction (GPSR) [73]
provides a constrained formulation where each value of α can
be split into its positive and negative parts. Vectors α+ and α−
are introduced to denote the positive and negative coefficients
of α, respectively. The sparse representation solution α can be
formulated as:

α = α+ − α−, α+ ≥ 0, α− ≥ 0 (V.1)

where the operator (·)+ denotes the positive-part operator,
which is defined as (x)+ = max{0, x}. Thus, ‖α‖1 = 1Td α++
1Td α−, where 1d = [1, 1, · · · , 1︸ ︷︷ ︸

d

]T is a d–dimensional vector

with d ones. Accordingly, problem III.12 can be reformulated
as a constrained quadratic problem:

argminL(α) = argmin
1
2
‖y− X [α+ − α−]‖22

+ λ(1Td α+ + 1Td α−) s.t. α+ ≥ 0, α− ≥ 0
(V.2)

or

argminL(α) = argmin
1
2
‖y− [X+,X−][α+ − α−]‖22

+ λ(1Td α+ + 1Td α−) s.t. α+ ≥ 0, α− ≥ 0
(V.3)

Furthermore, problem V.3 can be rewritten as:

argmin G(z) = cT z+
1
2
zTAz s.t. z ≥ 0 (V.4)
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where z = [α+;α−], c = λ12d + [−XT y;XT y], 12d =

[1, · · · , 1︸ ︷︷ ︸
2d

]T , A =
(

XTX −XTX
−XTX XTX

)
.

The GPSR algorithm employs the gradient descent and
standard line-search method [32] to address problemV.4. The
value of z can be iteratively obtained by utilizing

argmin zt+1 = zt − σ∇G(zt ) (V.5)

where the gradient of ∇G(zt ) = c+Azt and σ is the step size
of the iteration. For step size σ , GPSR updates the step size
by using

σ t = argmin
σ

G(zt − σgt ) (V.6)

where the function gt is pre-defined as

gti =

{
(∇G(zt ))i, if zti > 0 or (∇G(zt ))i < 0
0, otherwise.

(V.7)

Problem V.6 can be addressed with the close-form solution

σ t =
(gt )T (gt )
(gt )TA(gt )

(V.8)

Furthermore, the basic GPSR algorithm employs the
backtracking linear search method [32] to ensure that the step
size of gradient descent, in each iteration, is a more proper
value. The stop condition of the backtracking linear search
should satisfy

G((zt − σ t∇G(zt ))+) > G(zt )− β∇G(zt )T

×(zt − (zt − σ t∇G(zt ))+) (V.9)

where β is a small constant. The main steps of GPSR are
summarized in Algorithm 2. For more detailed information,
one can refer to the literature [73].

Algorithm 2 Gradient Projection Sparse Reconstruc-
tion (GPSR)
Task: To address the unconstraint problem:

α̂ = argminα 1
2‖y− Xα‖

2
2 + λ‖α‖1

Input: Probe sample y, the measurement matrix X , small
constant λ
Initialization: t = 0, β ∈ (0, 0.5), γ ∈ (0, 1), given α so
that z = [α+,α−].
While not converged do
Step 1: Compute σ t exploiting Eq. V.8 and σ t ← mid

(σmin, σ t , σmax), where mid(·, ·, ·) denotes the
middle value of the three parameters.

Step 2: While Eq. V.9 not satisfied
do σ t ← γ σ t end

Step 3: zt+1 = (zt − σ t∇G(zt ))+ and t = t + 1.
End
Output: zt+1, α

B. INTERIOR-POINT METHOD BASED SPARSE
REPRESENTATION STRATEGY
The Interior-point method [32] is not an iterative algorithm
but a smooth mathematic model and it always incorpo-
rates the Newton method to efficiently solve unconstrained
smooth problems of modest size [29]. When the Newton
method is used to address the optimization issue, a complex
Newton equation should be solved iteratively which is very
time-consuming. A method named the truncated Newton
method can effectively and efficiently obtain the solution of
the Newton equation. A prominent algorithm called the
truncated Newton based interior-point method (TNIPM)
exists, which can be utilized to solve the large-scale
l1-regularized least squares (i.e. l1_ls) problem [74].
The original problem of l1_ls is to solve problem III.12 and

the core procedures of l1_ls are shown below:
(1) Transform the original unconstrained non-smooth
problem to a constrained smooth optimization problem.
(2) Apply the interior-point method to reformulate the
constrained smooth optimization problem as a new
unconstrained smooth optimization problem.
(3) Employ the truncated Newton method to solve this
unconstrained smooth problem.

The main idea of the l1_ls will be briefly described. For
simplicity of presentation, the following one-dimensional
problem is used as an example.

|α| = arg min
−σ≤α≤σ

σ (V.10)

where σ is a proper positive constant.
Thus, problem III.12 can be rewritten as

α̂ = argmin
1
2
‖y− Xα‖22 + λ‖α‖1

= argmin
1
2
‖y− Xα‖22 + λ

∑N

i=1
min

−σi≤αi≤σi
σi

= argmin
1
2
‖y− Xα‖22 + λ min

−σi≤αi≤σi

∑N

i=1
σi

= arg min
−σi≤αi≤σi

1
2
‖y− Xα‖22 + λ

∑N

i=1
σi (V.11)

Thus problem III.12 is also equivalent to solve the
following problem:

α̂ = arg min
α,σ∈RN

1
2
‖y− Xα‖22 + λ

N∑
i=1

σi

s.t. − σi≤ αi≤ σi (V.12)

or

α̂ = arg min
α,σ∈RN

1
2
‖y− Xα‖22 + λ

N∑
i=1

σi

s.t. σi + αi ≥ 0, σi − αi ≥ 0 (V.13)

The interior-point strategy can be used to transform
problem V.13 into an unconstrained smooth problem

α̂ = arg min
α,σ∈RN

G(α, σ )=
v
2
‖y−Xα‖22 + λv

N∑
i=1

σi−B(α, σ )

(V.14)
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where B(α, σ ) =
∑N

i=1 log(σi + αi)+
∑N

i=1 log(σi − αi) is a
barrier function, which forces the algorithm to be performed
within the feasible region in the context of unconstrained
condition.

Subsequently, l1_ls utilizes the truncated Newton method
to solve problem V.14. The main procedures of addressing
problem V.14 are presented as follows:

First, the Newton system is constructed

H
[
4α

4σ

]
= −∇G(α, σ ) ∈ R2N (V.15)

where H = −∇
2G(α, σ ) ∈ R2N×2N is the Hessian

matrix, which is computed using the preconditioned conju-
gate gradient algorithm, and then the direction of linear search
[4α,4σ ] is obtained.

Second, the Lagrange dual of problem III.12 is used to
construct the dual feasible point and duality gap:

a) The Lagrangian function and Lagrange dual of
problem III.12 are constructed. The Lagrangian function is
reformulated as

L(α, z,u) = zT z+ λ‖α‖1 + u(Xα − y− z) (V.16)

where its corresponding Lagrange dual function is

α̂ = argmaxF(u) = −
1
4
uTu− uT y

s.t. |(XTu)i| ≤ λi (i = 1, 2, · · · ,N ) (V.17)

b) A dual feasible point is constructed

u = 2s(y− Xα), s = min{λ/|2yi − 2(XTXα)i|}∀i (V.18)

where u is a dual feasible point and s is the step size of the
linear search.

c) The duality gap is constructed, which is the gap between
the primary problem and the dual problem:

g = ‖y− Xα‖ + λ‖α‖1 − F(u) (V.19)

Third, the method of backtracking linear search is used to
determine an optimal step size of the Newton linear search.
The stopping condition of the backtracking linear search is

G(α + ηt4α, σ + ηt4σ ) > G(α, σ )

+ ρηt∇G(α, σ )[4α,4σ ] (V.20)

where ρ ∈ (0, 0.5) and ηt ∈ (0, 1) is the step size of the
Newton linear search.

Finally, the termination condition of the Newton linear
search is set to

ζ = min{0.1, βg/‖h‖2} (V.21)

where the function h = ∇G(α, σ ), β is a small constant,
and g is the duality gap. The main steps of algorithm l1_ls
are summarized in Algorithm 3. For further description and
analyses, please refer to the literature [74].

The truncated Newton based interior-point
method (TNIPM) [75] is a very effective method to solve
the l1-norm regularization problems. Koh et al. [76] also

Algorithm 3 Truncated Newton Based Interior-Point
Method (TNIPM) for l1_ls
Task: To address the unconstraint problem:

α̂ = argminα 1
2‖y− Xα‖

2
2 + λ‖α‖1

Input: Probe sample y, the measurement matrix X , small
constant λ
Initialization: t = 1, v = 1

λ
, ρ ∈ (0, 0.5), σ = 1N

Step 1: Employ preconditioned conjugate gradient algo-
rithm to obtain the approximation of H in Eq. V.15,
and then obtain the descent direction of linear search
[4αt ,4σ t ].
Step 2: Exploit the algorithm of backtracking linear search
to find the optimal step size of Newton linear search ηt ,
which satisfies the Eq. V.20.
Step 3: Update the iteration point utilizing (αt+1, σ t+1) =
(αt , σ t )+ (4αt +4σ t ).
Step 4: Construct feasible point using eq. V.18 and duality
gap in Eq. V.19, and compute the termination tolerance ζ
in Eq. V.21.
Step 5: If the condition g/F(u) > ζ is satisfied, stop;
Otherwise, return to step 1, update v in Eq. V.14 and
t = t + 1.
Output: α

utilized the TNIPM to solve large scale logistic regression
problems, which employed a preconditioned conjugate
gradient method to compute the search step size with
warm-start techniques. Mehrotra proposed to exploit the
interior-point method to address the primal-dual problem [77]
and introduced the second-order derivation of Taylor polyno-
mial to approximate a primal-dual trajectory. More analyses
of interior-point method for sparse representation can be
found in the literature [78].

C. ALTERNATING DIRECTION METHOD (ADM) BASED
SPARSE REPRESENTATION STRATEGY
This section shows how the ADM [44] is used to solve primal
and dual problems in III.12. First, an auxiliary variable is
introduced to convert problem in III.12 into a constrained
problem with the form of problem V.22. Subsequently, the
alternative direction method is used to efficiently address the
sub-problems of problem V.22. By introducing the auxiliary
term s ∈ Rd , problem III.12 is equivalent to a constrained
problem

argmin
α,s

1
2τ
‖s‖2 + ‖α‖1 s.t. s = y− Xα (V.22)

The optimization problem of the augmented Lagrangian
function of problem V.22 is considered

arg min
α,s,λ

L(α, s,λ) =
1
2τ
‖s‖2 + ‖α‖1 − λT

×(s+ Xα − y)+
µ

2
‖s+ Xα − y‖22

(V.23)
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where λ ∈ Rd is a Lagrange multiplier vector and µ is a
penalty parameter. The general framework of ADM is used
to solve problem V.23 as follows:

st+1 = argminL(s,αt ,λt ) (a)
αt+1 = argminL(st+1,α,λt ) (b)
λt+1 = λt − µ(st+1 + Xαt+1 − y) (c)

(V.24)

First, the first optimization problem V.24(a) is considered

argminL(s,αt ,λt ) =
1
2τ
‖s‖2 + ‖αt‖1 − (λt )T

×(s+ Xαt − y)+
µ

2
‖s+ Xαt − y‖22

=
1
2τ
‖s‖2−(λt )T s+

µ

2
‖s+Xαt − y‖22

+‖αt‖1 − (λt )T (Xαt − y) (V.25)

Then, it is known that the solution of problem V.25 with
respect to s is given by

st+1 =
τ

1+ µτ
(λt − µ(y− Xαt )) (V.26)

Second, the optimization problem V.24(b) is considered

argminL(st+1,α, λt )

=
1
2τ
‖st+1‖2 + ‖α‖1 − (λ)T

×(st+1 + Xα − y)+
µ

2
‖st+1 + Xα − y‖22

which is equivalent to

argmin{‖α‖1 − (λt )T (st+1 + Xα − y)+
µ

2
‖st+1Xα − y‖22}

= ‖α‖1 +
µ

2
‖st+1 + Xα − y− λt/µ‖22

= ‖α‖1 + f (α) (V.27)

where f (α) = µ
2 ‖s

t+1
+Xα−y−λt/µ‖22. If the second order

Taylor expansion is used to approximate f (α), the
problem V.27 can be approximately reformulated as

argmin{‖α‖1 + (α − αt )TXT (st+1 + Xαt − y− λt/µ)

+
1
2τ
‖α − αt‖22} (V.28)

where τ is a proximal parameter. The solution of
problem V.28 can be obtained by the soft thresholding
operator

αt+1 = soft{αt − τXT (st+1 + Xαt − y− λt/µ),
τ

µ
}

(V.29)

where soft(σ, η) = sign(σ ) max{|σ | − η, 0}.
Finally, the Lagrange multiplier vector λ is updated by

using Eq. V.24(c).
The algorithm presented above utilizes the second order

Taylor expansion to approximately solve the
sub-problem V.27 and thus the algorithm is denoted as an
inexact ADM or approximate ADM. The main procedures
of the inexact ADM based sparse representation method are

summarized in Algorithm 4. More specifically, the inexact
ADM described above is to reformulate the unconstrained
problem as a constrained problem, and then utilizes the
alternative strategy to effectively address the correspond-
ing sub-optimization problem. Moreover, ADM can also
efficiently solve the dual problems of the primal
problems III.9-III.12. For more information, please refer to
the literature [44], [79].

Algorithm 4 Alternating Direction Method (ADM) Based
Sparse Representation Strategy
Task: To address the unconstraint problem:

α̂ = argminα 1
2‖y− Xα‖

2
2 + τ‖α‖1

Input: Probe sample y, the measurement matrix X , small
constant λ
Initialization: t = 0, s0 = 0, α0 = 0, λ0 = 0, τ = 1.01,
µ is a small constant.
Step 1: Construct the constraint optimization problem of
problem III.12 by introducing the auxiliary parameter
and its augmented Lagrangian function, i.e.
problem (V.22) and (V.23).
While not converged do
Step 2: Update the value of the st+1 by using Eq. (V.25).
Step 2: Update the value of the αt+1 by using Eq. (V.29).
Step 3: Update the value of the λt+1 by using

Eq. (V.24(c)).
Step 4: µt+1 = τµt and t = t + 1.

End While
Output: αt+1

VI. PROXIMITY ALGORITHM BASED
OPTIMIZATION STRATEGY
In this section, the methods that exploit the proximity
algorithm to solve constrained convex optimization problems
are discussed. The core idea of the proximity algorithm is
to utilize the proximal operator to iteratively solve the
sub-problem, which is much more computationally efficient
than the original problem. The proximity algorithm is
frequently employed to solve nonsmooth, constrained
convex optimization problems [29]. Furthermore, the general
problem of sparse representation with l1-norm regulariza-
tion is a nonsmooth convex optimization problem, which
can be effectively addressed by using the proximal
algorithm.

Suppose a simple constrained optimization problem is

min{h(x)|x ∈ χ} (VI.1)

where χ ⊂ Rn. The general framework of addressing the
constrained convex optimization problem VI.1 using the
proximal algorithm can be reformulated as

x̃t = argmin{h(x)+
τ

2
‖x− xt‖2|x ∈ χ} (VI.2)

where τ and xt are given. For definiteness and without loss
of generality, it is assumed that there is the following linear
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constrained convex optimization problem

argmin{F(x)+ G(x)|x ∈ χ} (VI.3)

The solution of problem VI.3 obtained by employing the
proximity algorithm is:

xt+1 = argmin{F(x)+ 〈∇G(xt ), x− xt 〉 +
1
2τ
‖x− xt‖2}

= argmin{F(x)+
1
2τ
‖x− θ t‖2} (VI.4)

where θ = xt − τ∇G(xt ). More specifically, for the sparse
representation problem with l1-norm regularization, the main
problem can be reformulated as:

minP(α) = {λ‖α‖1 | Aα = y}

or minP(α) = {λ‖α‖1 + ‖Aα − y‖22 | α ∈ Rn
} (VI.5)

which are considered as the constrained sparse representation
of problem III.12.

A. SOFT THRESHOLDING OR SHRINKAGE OPERATOR
First, a simple form of problem III.12 is introduced, which
has a closed-form solution, and it is formulated as:

α∗ = min
α
h(α) = λ‖α‖1 +

1
2
‖α − s‖2

=

N∑
j=1

λ|αj| +

N∑
j=1

1
2
(αj − sj)2 (VI.6)

where α∗ is the optimal solution of problem VI.6, and then
there are the following conclusions:
(1) if αj > 0, then h(α) = λα + 1

2‖α − s‖
2 and its derivative

is h′(αj) = λ+ α∗j − sj.
Let h′(αj) = 0⇒ α∗j = sj − λ, where it indicates sj > λ;
(2) if αj < 0, then h(α) = −λα+ 1

2‖α−s‖
2 and its derivative

is h′(αj) = −λ+ α∗j − sj.
Let h′(αj) = 0⇒ α∗j = sj + λ, where it indicates sj < −λ;
(3) if −λ ≤ sj ≤ λ, and then α∗j = 0.
So the solution of problem VI.6 is summarized as

α∗j =


sj − λ, if sj > λ

sj + λ, if sj < −λ
0, otherwise

(VI.7)

The equivalent expression of the solution is
α∗ = shrink(s, λ), where the j-th component of shrink(s, λ)
is shrink(s, λ)j = sign(sj) max{|sj| − λ, 0}. The operator
shrink(•) can be regarded as a proximal operator.

B. ITERATIVE SHRINKAGE THRESHOLDING
ALGORITHM (ISTA)
The objective function of ISTA [80] has the form of

argminF(α) =
1
2
‖Xα − y‖22 + λ‖α‖1 = f (α)+ λg(α)

(VI.8)

and is usually difficult to solve. Problem VI.8 can be
converted to the form of an easy problemVI.6 and the explicit
procedures are presented as follows.

First, Taylor expansion is used to approximate
f (α) = 1

2‖Xα−y‖
2
2 at a point of α

t . The second order Taylor
expansion is

f (α) = f (αt )+ (α − αt )T∇f (αt )

+
1
2
(α − αt )THf (αt )(α − αt )+ · · · (VI.9)

where Hf (αt ) is the Hessian matrix of f (α) at αt . For the
function f (α), ∇f (α) = XT (Xα − y) and Hf (α) = XTX
can be obtained.

f (α) =
1
2
‖Xαt − y‖22 + (α − αt )TXT (Xαt − y)

+
1
2
(α − αt )TXTX (α − αt ) (VI.10)

If the Hessian matrix Hf (α) is replaced or approximated in
the third term above by using a scalar 1

τ
I , and then

f (α) ≈
1
2
‖Xαt − y‖22 + (α − αt )TXT (Xαt − y)

+
1
2τ

(α − αt )T (α − αt ) = Qt (α,αt ) (VI.11)

Thus problem VI.8 using the proximal algorithm can be
successively addressed by

αt+1 = argminQt (α,αt )+ λ‖α‖1 (VI.12)

Problem VI.12 is reformulated to a simple form of
problem VI.6 by

Qt (α,αt ) =
1
2
‖Xαt − y‖22 + (α − αt )TXT (Xαt − y)

+
1
2τ
‖α − αt‖22

=
1
2
‖Xαt−y‖22 +

1
2τ
‖α − αt+ τXT (Xαt− y)‖22

−
τ

2
‖XT (Xαt − y)‖22

=
1
2τ
‖α − (αt − τXT (Xαt − y))‖22 + B(α

t )

(VI.13)

where the term B(αt ) = 1
2‖Xα

t
− y‖22 −

τ
2‖X

T (Xαt − y)‖2

in problem VI.12 is a constant with respect to variable α, and
it can be omitted. As a result, problem VI.12 is equivalent to
the following problem:

αt+1 = argmin
1
2τ
‖α − θ (αt )‖22 + λ‖α‖1 (VI.14)

where θ (αt ) = αt − τXT (Xαt − y).
The solution of the simple problem VI.6 is applied to

solve problem VI.14 where the parameter t is replaced by
the equation θ (αt ), and the solution of problem VI.14 is
αt+1 = shrink(θ (αt ), λτ ). Thus, the solution of ISTA is
reached. The techniques used here are called linearization or
preconditioning and more detailed information can be found
in the literature [80], [81].
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C. FAST ITERATIVE SHRINKAGE THRESHOLDING
ALGORITHM (FISTA)
The fast iterative shrinkage thresholding algorithm (FISTA)
is an improvement of ISTA. FISTA [82] not only preserves
the efficiency of the original ISTA but also promotes the
effectiveness of ISTA so that FISTA can obtain global
convergence.

Considering that the HessianmatrixHf (α) is approximated
by using a scalar 1

τ
I for ISTA in Eq. VI.9, FISTA utilizes the

minimumLipschitz constant of the gradient∇f (α) to approx-
imate the Hessian matrix of f (α), i.e. L(f ) = 2λmax(XTX ).
Thus, the problem VI.8 can be converted to the problem
below:

f (α) ≈
1
2
‖Xαt − y‖22 + (α − αt )TXT (Xαt − y)

+
L
2
(α − αt )T (α − αt ) = Pt (α,αt ) (VI.15)

where the solution can be reformulated as

αt+1 = argmin
L
2
‖α − θ (αt )‖22 + λ‖α‖1 (VI.16)

where θ (αt ) = αt − 1
LX

T (Xαt − y).
Moreover, to accelerate the convergence of the algorithm,

FISTA also improves the sequence of iteration points, instead
of employing the previous point it utilizes a specific linear
combinations of the previous two points {αt ,αt−1}, i.e.

αt = αt +
µt − 1
µt+1

(αt − αt−1) (VI.17)

where µt is a positive sequence, which satisfies
µt ≥ (t+1)/2, and the main steps of FISTA are summarized
in Algorithm 5. The backtracking linear research strategy
can also be utilized to explore a more feasible value of L
and more detailed analyses on FISTA can be found in the
literature [82], [83].

Algorithm 5 Fast Iterative Shrinkage Thresholding
Algorithm (FISTA)
Task: To address the problem α̂ = argminF(α) =
1
2‖Xα − y‖

2
2 + λ‖α‖1

Input: Probe sample y, the measurement matrix X , small
constant λ
Initialization: t = 0, µ0

= 1, L = 23max(XTX ), i.e.
Lipschitz constant of ∇f .
While not converged do
Step 1: Exploit the shrinkage operator in equation VI.7

to solve problem VI.16.

Step 2: Update the value ofµ usingµt+1 = 1+
√

1+4(µt )2

2 .
Step 3: Update iteration sequence αt using

equation VI.17.
End
Output: α

D. SPARSE RECONSTRUCTION BY SEPARABLE
APPROXIMATION (SpaRSA)
Sparse reconstruction by separable approxi-
mation (SpaRSA) [84] is another typical proximity algorithm
based on sparse representation, which can be viewed as an
accelerated version of ISTA. SpaRSA provides a general
algorithmic framework for solving the sparse representation
problem and here a simple specific SpaRSA with adaptive
continuation on ISTA is introduced. The main contributions
of SpaRSA are trying to optimize the parameter λ in
problem VI.8 by using the worm-starting technique, i.e.
continuation, and choosing a more reliable approximation
of Hf (α) in problem VI.9 using the Barzilai-Borwein (BB)
spectral method [85]. The worm-starting technique and
BB spectral approach are introduced as follows.

1) UTILIZING THE WORM-STARTING TECHNIQUE
TO OPTIMIZE λ
The values of λ in the sparse representation methods
discussed above are always set to be a specific small con-
stant. However, Hale et al. [86] concluded that the technique
that exploits a decreasing value of λ from a warm-starting
point can more efficiently solve the sub-problem VI.14 than
ISTA that is a fixed point iteration scheme. SpaRSA uses
an adaptive continuation technique to update the value of λ
so that it can lead to the fastest convergence. The procedure
regenerates the value of λ using

λ = max{γ ‖XT y‖∞, λ} (VI.18)

where γ is a small constant.

2) UTILIZING THE BB SPECTRAL METHOD
TO APPROXIMATE Hf (α)
ISTA employs 1

τ
I to approximate the matrix Hf (α), which

is the Hessian matrix of f (α) in problem VI.9 and FISTA
exploits the Lipschitz constant of ∇f (α) to replace Hf (α).
However, SpaRSA utilizes the BB spectral method to choose
the value of τ to mimic the Hessian matrix. The value of τ is
required to satisfy the condition:

1
τ t+1

(αt+1 − αt ) ≈ ∇f (αt+1)−∇f (αt ) (VI.19)

which satisfies the minimization problem

1
τ t+1

= argmin ‖
1
τ
(αt+1 − αt )− (∇f (αt+1)−∇f (αt ))‖22

=
(αt+1 − αt )T (∇f (αt+1)−∇f (αt ))

(αt+1 − αt )T (αt+1 − αt )
(VI.20)

For problem VI.14, SpaRSA requires that the value
of λ is a decreasing sequence using the Eq. VI.18 and the
value of τ should meet the condition of Eq. VI.20. The
sparse reconstruction by separable approximation (SpaRSA)
is summarized in Algorithm 6 and more information can be
found in the literature [84].
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Algorithm 6 Sparse Reconstruction by Separable
Approximation (SpaRSA)
Task: To address the problem

α̂ = argminF(α) = 1
2‖Xα − y‖

2
2 + λ‖α‖1

Input: Probe sample y, the measurement matrix X , small
constant λ
Initialization: t = 0, i = 0, y0 = y, 1

τ 0
I ≈ Hf (α) = XTX ,

tolerance ε = 10−5.
Step 1: λt = max{γ ‖XT yt‖∞, λ}.
Step 2: Exploit shrinkage operator to solve

problem VI.14, i.e. αi+1 = shrink
(αi − τ iXT (XTαt − y), λtτ i).

Step 3: Update the value of 1
τ i+1

using the Eq. VI.20.

Step 4: If ‖α
i+1
−αi‖

αi
≤ ε, go to step 5; Otherwise,

return to step 2 and i = i+ 1.
Step 5: yt+1 = y− Xαt+1.
Step 6: If λt = λ, stop; Otherwise, return to step 1 and

t = t + 1.
Output: αi

E. l1/2-NORM REGULARIZATION BASED
SPARSE REPRESENTATION
Sparse representation with the lp-norm (0<p<1) regulariza-
tion leads to a nonconvex, nonsmooth, and non-Lipschitz
optimization problem and its general forms are described as
problems III.13 and III.14. The lp-norm (0<p<1) regulariza-
tion problem is always difficult to be efficiently addressed
and it has also attracted wide interests from large numbers of
research groups. However, the research group led by
ZongbenXu summarizes the conclusion that themost impres-
sive and representative algorithm of the lp-norm (0<p<1)
regularization is sparse representation with the l1/2-norm
regularization [87]. Moreover, they have proposed some
effective methods to solve the l1/2-norm regularization
problem [60], [88].

In this section, a half proximal algorithm is introduced
to solve the l1/2-norm regularization problem [60], which
matches the iterative shrinkage thresholding algorithm for the
l1-norm regularization discussed above and the iterative hard
thresholding algorithm for the l0-norm regularization. Sparse
representation with the l1/2-norm regularization is explicitly
to solve the problem as follows:

α̂ = argmin{F(α) = ‖Xα − y‖22 + λ‖α‖
1/2
1/2} (VI.21)

where the first-order optimality condition of F(α) on α can
be formulated as

∇F(α) = XT (Xα − y)+
λ

2
∇(‖α‖1/21/2) = 0 (VI.22)

which admits the following equation:

XT (y− Xα) =
λ

2
∇(‖α‖1/21/2) (VI.23)

where ∇(‖α‖1/21/2) denotes the gradient of the regulariza-

tion term ‖α‖1/21/2. Subsequently, an equivalent transformation

of Eq. VI.23 is made by multiplying a positive constant τ and
adding a parameter α to both sides. That is,

α + τXT (y− Xα) = α + τ
λ

2
∇(‖α‖1/21/2) (VI.24)

To this end, the resolvent operator [60] is introduced to
compute the resolvent solution of the right part of Eq. VI.24,
and the resolvent operator is defined as

R
λ, 12

(•) =
(
I +

λτ

2
∇(‖ • ‖1/21/2)

)−1
(VI.25)

which is very similar to the inverse function of the right part
of Eq. VI.24. The resolvent operator is always satisfied no
matter whether the resolvent solution of ∇(‖ • ‖1/21/2) exists or
not [60]. Applying the resolvent operator to solve
problem VI.24

α = (I +
λτ

2
∇(‖ • ‖1/21/2))

−1(α + τX t (y− Xα))

= Rλ,1/2(α + τXT (y− Xα)) (VI.26)

can be obtained which is well-defined. θ (α) = α + τXT

(y − Xα) is denoted and the resolvent operator can be
explicitly expressed as:

R
λ, 12

(x) = (f
λ, 12

(x1), fλ, 12
(x2), · · · , fλ, 12

(xN ))T (VI.27)

where

f
λ, 12

(xi) =
2
3
xi(1+ cos(

2π
3
−

2
3
gλ(xi)),

gλ(xi) = arg cos(
λ

8
(
|xi|
3

)−
3
2 ) (VI.28)

which have been demonstrated in the literature [60].
Thus the half proximal thresholding function for the

l1/2-norm regularization is defined as below:

h
λτ, 12

(xi) =

{
f
λτ, 12

(xi), if |xi| >
3√54
4 (λτ )

2
3

0, otherwise
(VI.29)

where the threshold
3√54
4 (λτ )

2
3 has been conceived and

demonstrated in the literature [60].
Therefore, if Eq. VI.29 is applied to Eq. VI.27, the half

proximal thresholding function, instead of the resolvent
operator, for the l1/2-norm regularization problem VI.25 can
be explicitly reformulated as:

α = H
λτ, 12

(θ (α)) (VI.30)

where the half proximal thresholding operator H [60] is
deductively constituted by Eq. VI.29.

Up to now, the half proximal thresholding algorithm has
been completely structured by Eq. VI.30. However, the
options of the regularization parameter λ in Eq. VI.24 can
seriously dominate the quality of the representation solution
in problemVI.21, and the values of λ and τ can be specifically
fixed by

τ =
1− ε
‖X‖2

and λ =

√
96
9τ
|[θ (α)]k+1|

3
2 (VI.31)
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where ε is a very small constant, which is very close to
zero, the k denotes the limit of sparsity (i.e. k-sparsity), and
[•]k refers to the k-th largest component of [•]. The half
proximal thresholding algorithm for l1/2-norm regularization
based sparse representation is summarized in Algorithm 7
and more detailed inferences and analyses can be found in
the literature [60], [88].

Algorithm 7 The Half Proximal Thresholding Algorithm for
l1/2-Norm Regularization
Task: To address the problem

α̂ = argminF(α) = ‖Xα − y‖22 + λ‖α‖
1/2
1/2

Input: Probe sample y, the measurement matrix X
Initialization: t = 0, ε = 0.01, τ = 1−ε

‖X‖2
.

While not converged do
Step 1: Compute θ (αt ) = αt + τXT (y− Xαt ).
Step 2: Compute λt =

√
96
9τ |[θ (α

t )]k+1|
3
2 in Eq. VI.31.

Step 3: Apply the half proximal thresholding operator to
obtain the representation solution αt+1 =
H
λtτ,

1
2
(θ (αt )).

Step 4: t = t + 1.
End
Output: α

F. AUGMENTED LAGRANGE MULTIPLIER BASED
OPTIMIZATION STRATEGY
The Lagrange multiplier is a widely used tool to eliminate
the equality constrained problem and convert it to address the
unconstrained problem with an appropriate penalty function.
Specifically, the sparse representation problem III.9 can be
viewed as an equality constrained problem and the equivalent
problem III.12 is an unconstrained problem, which augments
the objective function of problem III.9 with a weighted
constraint function. In this section, the augmented Lagrangian
method (ALM) is introduced to solve the sparse representa-
tion problem III.9.

First, the augmented Lagrangian function of problem III.9
is conceived by introducing an additional equality
constrained function, which is enforced on the Lagrange
function in problem III.12. That is,

L(α, λ) = ‖α‖1 +
λ

2
‖y− Xα‖22 s.t. y− Xα = 0

(VI.32)

Then, a new optimization problem VI.32 with the form of the
Lagrangain function is reformulated as

argminLλ(α, z) = ‖α‖1 +
λ

2
‖y− Xα‖22 + z

T (y− Xα)

(VI.33)

where z ∈ Rd is called the Lagrange multiplier vector or dual
variable and Lλ(α, z) is denoted as the augmented Lagrangian
function of problem III.9. The optimization problem VI.33
is a joint optimization problem of the sparse representation

coefficient α and the Lagrange multiplier vector z.
Problem VI.33 is solved by optimizing α and z alternatively
as follows:

αt+1 = argminLλ(α, zt )

= argmin(‖α‖1 +
λ

2
‖y− Xα‖22 + (zt )TXα) (VI.34)

zt+1 = zt + λ(y− Xαt+1) (VI.35)

where problem VI.34 can be solved by exploiting the
FISTA algorithm. Problem VI.34 is iteratively solved and the
parameter z is updated using Eq. VI.35 until the termination
condition is satisfied. Furthermore, if the method of employ-
ingALM to solve problemVI.33 is denoted as the primal aug-
mented Lagrangian method (PALM) [89], the dual function
of problem III.9 can also be addressed by the ALM algorithm,
which is denoted as the dual augmented Lagrangian
method (DALM) [89]. Subsequently, the dual optimization
problem III.9 is discussed and the ALM algorithm is utilized
to solve it.
First, consider the following equation:

‖α‖1 = max
‖θ‖∞≤1

〈θ ,α〉 (VI.36)

which can be rewritten as

‖α‖1 = max{〈θ ,α〉 − IB1∞}
or ‖α‖1 = sup{〈θ ,α〉 − IB1∞} (VI.37)

where Bλp = {x ∈ RN | ‖x‖p ≤ λ} and I�(x) is a indicator

function, which is defined as I�(x) =
{
0, x ∈ �
∞, x 6∈ �.

Hence,

‖α‖1 = max{〈θ ,α〉 : θ ∈ B1∞} (VI.38)

Second, consider the Lagrange dual problem of
problem III.9 and its dual function is

g(λ) = inf
α
{‖α‖1+λ

T (y−Xα)}=λT y− sup
α
{λTXα−‖α‖1}

(VI.39)

where λ ∈ Rd is a Lagrangian multiplier. If the definition of
conjugate function is applied to Eq. VI.37, it can be verified
that the conjugate function of IB1∞ (θ ) is ‖α‖1. Thus Eq. VI.39
can be equivalently reformulated as

g(λ) = λT y− IB1∞ (X
Tλ) (VI.40)

The Lagrange dual problem, which is associated with the
primal problem III.9, is an optimization problem:

max
λ
λT y s.t. (XTλ) ∈ B1∞ (VI.41)

Accordingly,

min
λ,z
−λT y s.t. z− XTλ = 0, z ∈ B1∞ (VI.42)

Then, the optimization problemVI.42 can be reconstructed as

arg min
λ,z,µ

L(λ, z,µ) = −λT y− µT (z− XTλ)

+
τ

2
‖z−XTλ‖22 s.t. z ∈ B1∞ (VI.43)
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where µ ∈ Rd is a Lagrangian multiplier and τ is a penalty
parameter.

Finally, the dual optimization problem VI.43 is solved and
a similar alternating minimization idea of PALM can also be
applied to problem VI.43, that is,

zt+1 = arg min
z∈B1∞

Lτ (λt , z,µt )

= arg min
z∈B1∞
{−µT (z−XTλt )+

τ

2
‖z−XTλt‖22}

= arg min
z∈B1∞
{
τ

2
‖z− (XTλt +

2
τ
µT )‖22}

= PB1∞ (X
Tλt +

1
τ
µT ) (VI.44)

where PB1∞ (u) is a projection, or called a proximal operator,
onto B1∞ and it is also called group-wise soft-thresholding.
For example, let x = PB1∞ (u), then the i-th component of
solution x satisfies xi = sign(ui) min{|ui|, 1}

λt+1 = argmin
λ
Lτ (λ, zt+1,µt )

= argmin
λ
{−λT y+ (µt )TXTλ+

τ

2
‖zt+1 − XTλ‖22}

= Q(λ) (VI.45)

Take the derivative of Q(λ) with respect to λ and obtain

λt+1 = (τXXT )−1(τXzt+1 + y− Xµt ) (VI.46)

µt+1 = µt − τ (zt+1 − XTλt+1) (VI.47)

The DALM for sparse representation with l1-norm regu-
larization mainly exploits the augmented Lagrange method
to address the dual optimization problem of problem III.9
and a proximal operator, the projection operator, is utilized
to efficiently solve the subproblem. The algorithm of DALM
is summarized in Algorithm 8. For more detailed description,
please refer to the literature [89].

Algorithm 8 Dual Augmented Lagrangian Method for
l1-Norm Regularization
Task: To address the dual problem of α̂ =

argminα ‖α‖1 s.t. y = Xα
Input: Probe sample y, the measurement matrix X , a small
constant λ0.
Initialization: t = 0, ε = 0.01, τ = 1−ε

‖X‖2
, µ0
= 0.

While not converged do
Step 1: Apply the projection operator to compute

zt+1 = PB1∞ (X
Tλt + 1

τ
µT ).

Step 2: Update the value of λt+1 = (τXXT )−1

(τXzt+1 + y− Xµt ).
Step 3: Update the value of µt+1 = µt−

τ (zt+1 − XTλt+1).
Step 4: t = t + 1.

End While
Output: α = µ[1 : N ]

G. OTHER PROXIMITY ALGORITHM BASED
OPTIMIZATION METHODS
The theoretical basis of the proximity algorithm is to first
construct a proximal operator, and then utilize the proximal
operator to solve the convex optimization problem. Massive
proximity algorithms have followed up with improved
techniques to improve the effectiveness and efficiency of
proximity algorithm based optimization methods. For exam-
ple, Elad et al. proposed an iterative method named parallel
coordinate descent algorithm (PCDA) [90] by introducing the
element-wise optimization algorithm to solve the regularized
linear least squares with non-quadratic regularization
problem.

Inspired by belief propagation in graphical models,
Donoho et al. developed a modified version of the
iterative thresholding method, called approximate message
passing (AMP) method [91], to satisfy the requirement that
the sparsity undersampling tradeoff of the new algorithm
is equivalent to the corresponding convex optimization
approach. Based on the development of the first-ordermethod
called Nesterov’s smoothing framework in convex opti-
mization, Becker et al. proposed a generalized Nesterov’s
algorithm (NESTA) [92] by employing the continuation-
like scheme to accelerate the efficiency and flexibility.
Subsequently, Becker et al. [93] further constructed a general
framework, i.e. templates for convex cone solvers (TFOCS),
for solving massive certain types of compressed sensing
reconstruction problems by employing the optimal first-order
method to solve the smoothed dual problem of the equiva-
lent conic formulation of the original optimization problem.
Further detailed analyses and inference information related
to proximity algorithms can be found in the
literature [29], [83].

VII. HOMOTOPY ALGORITHM BASED
SPARSE REPRESENTATION
The concept of homotopy derives from topology and the
homotopy technique is mainly applied to address a nonlinear
system of equations problem. The homotopy method was
originally proposed to solve the least square problem with
the l1-penalty [94]. The main idea of homotopy is to solve
the original optimization problems by tracing a continuous
parameterized path of solutions along with varying
parameters. Having a highly intimate relationship with the
conventional sparse representationmethod such as least angle
regression (LAR) [43], OMP [64] and polytope faces
pursuit (PFP) [95], the homotopy algorithm has been success-
fully employed to solve the l1-norm minimization problems.
In contrast to LAR and OMP, the homotopy method is more
favorable for sequentially updating the sparse solution by
adding or removing elements from the active set. Some
representative methods that exploit the homotopy-based
strategy to solve the sparse representation problem with
the l1-norm regularization are explicitly presented in the
following parts of this section.
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A. LASSO HOMOTOPY
Because of the significance of parameters in l1-norm
minimization, the well-known LASSO homotopy algorithm
is proposed to solve the LASSO problem in III.9 by tracing
the whole homotopy solution path in a range of decreasing
values of parameter λ. It is demonstrated that problem III.12
with an appropriate parameter value is equivalent to
problem III.9 [30]. Moreover, it is apparent that as we change
λ from a very large value to zero, the solution of
problem III.12 is converging to the solution of
problem III.9 [30]. The set of varying value λ conceives
the solution path and any point on the solution path is the
optimality condition of problem III.12. More specifically, the
LASSO homotopy algorithm starts at an large initial value of
parameter λ and terminates at a point of λ, which approx-
imates zero, along the homotopy solution path so that the
optimal solution converges to the solution of problem III.9.
The fundamental of the homotopy algorithm is that the
homotopy solution path is a piecewise linear path with a
discrete number of operations while the value of the homo-
topy parameter changes, and the direction of each segment
and the step size are absolutely determined by the sign
sequence and the support of the solution on the corresponding
segment, respectively [96].

Based on the basic ideas in a convex optimization problem,
it is a necessary condition that the zero vector should be
a solution of the subgradient of the objective function of
problem III.12. Thus, we can obtain the subgradiential of the
objective function with respect to α for any given value of λ,
that is,

∂L
∂α
= −XT (y− Xα)+ λ∂‖α‖1 (VII.1)

where the first term r = XT (y − Xα) is called the vector
of residual correlations, and ∂‖α‖1 is the subgradient
obtained by

∂‖α‖1 =

{
θ ∈ RN

∣∣∣∣ θi = sgn(αi), αi 6= 0
θi ∈ [−1, 1], αi = 0

}
Let3 and u denote the support of α and the sign sequence

of α on its support 3, respectively. X3 denotes that the
indices of all the samples in X3 are all included in the
support set3. If we analyze the KKT optimality condition for
problem III.12, we can obtain the following two equivalent
conditions of problem VII.1, i.e.

X3(y− Xα) = λu; ‖XT3c (y− Xα)‖∞ ≤ λ (VII.2)

where 3c denotes the complementary set of the set 3.
Thus, the optimality conditions in VII.2 can be divided into
N constraints and the homotopy algorithm maintains both of
the conditions along the optimal homotopy solution path for
any λ ≥ 0. As we decrease the value of λ to λ−τ , for a small
value of τ , the following conditions should be satisfied

XT3(y− Xα)+ τX
T
3Xδ = (λ− τ )u (a)

‖p+ τq‖∞ ≤ λ− τ (b) (VII.3)

where p = XT (y − Xα), q = XTXδ and δ is the update
direction.

Generally, the homotopy algorithm is implemented
iteratively and it follows the homotopy solution path by
updating the support set by decreasing parameter λ from
a large value to the desired value. The support set of the
solution will be updated and changed only at a critical point
of λ, where either an existing nonzero element shrinks to
zero or a new nonzero element will be added into the support
set. The two most important parameters are the step size τ
and the update direction δ. At the l-th stage (if (XT3X3)

−1

exists), the homotopy algorithm first calculates the update
direction, which can be obtained by solving

XT3X3δl = u (VII.4)

Thus, the solution of problem VII.4 can be written as

δl =

{
(XT3X3)

−1u, on 3
0, otherwise

(VII.5)

Subsequently, the homotopy algorithm computes the step
size τ to the next critical point by tracing the homotopy
solution path. i.e. the homotopy algorithm moves along the
update direction until one of constraints in VII.3 is not
satisfied. At this critical point, a new nonzero element
must enter the support 3, or one of the nonzero elements
in α will be shrink to zero, i.e. this element must be removed
from the support set 3. Two typical cases may lead to a new
critical point, where either condition of VII.3 is violated. The
minimum step size which leads to a critical point can be easily
obtained by computing τ ∗l = min(τ+l , τ

−

l ), and τ+l and τ−l are
computed by

τ+l = mini∈3c

(
λ− pi

1− xTi X3δl
,

λ+ pi
1+ xTi X3δl

)
+

(VII.6)

τ−l = mini∈3

(
−αil

δil

)
+

(VII.7)

where pi = xTi (y − xiαil) and min(·)+ denotes that the
minimum is operated over only positive arguments. τ+l is
the minimum step size that turns an inactive element at the
index i+ in to an active element, i.e. the index i+ should be
added into the support set. τ−l is the minimum step size that
shrinks the value of a nonzero active element to zero at the
index i− and the index i− should be removed from the support
set. The solution is updated by αl+1 = αl + τ

∗
l δ, and its

support and sign sequence are renewed correspondingly.
The homotopy algorithm iteratively computes the step size

and the update direction, and updates the homotopy solution
and its corresponding support and sign sequence till the
condition ‖p‖∞ = 0 is satisfied so that the solution of
problem III.9 is reached. The principal steps of the LASSO
homotopy algorithm have been summarized in Algorithm 9.
For further description and analyses, please refer to the
literature [30], [96].
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Algorithm 9 Lasso Homotopy Algorithm
Task: To addrss the Lasso problem:

α̂ = argminα ‖y− Xα‖22 s.t. ‖α‖1 ≤ ε

Input: Probe sample y, measurement matrix X .
Initialization: l = 1, initial solution αl and its support
set 3l .
Repeat:
Step 1: Compute update direction δl by using

Eq. (VII.5).
Step 2: Compute τ+l and τ−l by using Eq. (VII.6) and

Eq. (VII.7).
Step 3: Compute the optimal minimum step size τ ∗l by

using τ ∗l = min{τ+l , τ
−

l }.
Step 4: Update the solution αl+1 by using αl+1 = αl

+τ ∗l δl .
Step 5: Update the support set:

If τ+l == τ
−

l then
Remove the i− from the support set, i.e.
3l+1 = 3l\i−.

else
Add the i+ into the support set, i.e.
3l+1 = 3l

⋃
i+

End if
Step 6: l = l + 1.

Until ‖XT (y− Xα)‖∞ = 0
Output: αl+1

B. BPDN HOMOTOPY
Problem III.11, which is called basis pursuit
denoising (BPDN) in signal processing, is the unconstrained
Lagrangian function of the LASSO problem III.9, which is
an unconstrained problem. The BPDN homotopy algorithm
is very similar to the LASSO homotopy algorithm. If we
consider the KKT optimality condition for problem III.12,
the following condition should be satisfied for the solution α

‖XT (y− Xα)‖∞ ≤ λ (VII.8)

As for any given value of λ and the support set 3, the
following two conditions also need to be satisfied

XT3(y− Xα) = λu; ‖X
T
3c (y− Xα)‖∞ ≤ λ (VII.9)

The BPDN homotopy algorithm directly computes the
homotopy solution by

α =

{
(XT3X3)

−1(XT3y− λu), on 3
0, otherwise

(VII.10)

which is somewhat similar to the soft-thresholding operator.
The value of the homotopy parameter λ is initialized with a
large value, which satisfies λ0 > ‖XT y‖∞. As the value of
the homotopy parameter λ decreases, the BPDN homotopy
algorithm traces the solution in the direction of (XT3X3)

−1u
till the critical point is obtained. Each critical point is reached
when either an inactive element is transferred into an active
element, i.e. its corresponding index should be added into the

support set, or an nonzero active element value in α shrinks
to zero, i.e. its corresponding index should be removed from
the support set. Thus, at each critical point, only one element
is updated, i.e. one element being either removed from or
added into the active set, and each operation is very com-
putationally efficient. The algorithm is terminated when the
value of the homotopy parameter is lower than its desired
value. The BPDN homotopy algorithm has been summarized
in Algorithm 10. For further detail description and analyses,
please refer to the literature [43].

Algorithm 10 BPDN Homotopy Algorithm
Task: To address the Lasso problem:

α̂ = argminα ‖y− Xα‖22 + λ‖α‖1
Input: Probe sample y, measurement matrix X .
Initialization: l = 0, initial solution α0 and its support
set 30, a large value λ0, step size τ , tolerance ε.
Repeat:
Step 1: Compute update direction δl+1 by using

δl+1 = (XT3X3)
−1ul .

Step 2: Update the solution αl+1 by using Eq. (VII.10).
Step 3: Update the support set and the sign sequence set.
Step 6: λl+1 = λl − τ , l = l + 1.

Until λ ≤ ε
Output: αl+1

C. ITERATIVE REWEIGHTING l1-NORM
MINIMIZATION VIA HOMOTOPY
Based on the homotopy algorithm, Asif and Romberg [96]
presented a enhanced sparse representation objective func-
tion, a weighted l1-norm minimization, and then provided
two fast and accurate solutions, i.e. the iterative reweight-
ing algorithm, which updated the weights with a new ones,
and the adaptive reweighting algorithm, which adaptively
selected the weights in each iteration. Here the iterative
reweighting algorithm via homotopy is introduced. The
objective function of the weighted l1-norm minimization is
formulated as

argmin
1
2
‖Xα − y‖22 + ‖Wα‖1 (VII.11)

where W = diag[w1,w2, · · · ,wN ] is the weight of the
l1-norm and also is a diagonal matrix. For more explicit
description, problem VII.11 can be rewritten as

argmin
1
2
‖Xα − y‖22 +

N∑
i=1

wi|αi| (VII.12)

A common method [43], [73] to update the weight W is
achieved by exploiting the solution of problem VII.12, i.e. α,
at the previous iteration, and for the i-th element of the weight
wi is updated by

wi =
λ

|αi| + σ
(VII.13)

where parameters λ and σ are both small constants. In order
to efficiently update the solution of problem (7-9), the homo-
topy algorithm introduces a new weight of the l1-norm and
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a new homotopy based reweighting minimization problem is
reformulated as

argmin
1
2
‖Xα − y‖22 +

N∑
i=1

((1− σ )ŵi + σ ŵi)|αi|

(VII.14)

where ŵi denotes the new obtained weight by the
homotopy algorithm, parameter τ is denoted as the homotopy
parameter varying from 0 to 1. Apparently, problem VII.14
can be evolved to problem VII.12 with the increasing value
of the homotopy parameter by tracing the homotopy solution
path. Similar to the LASSO homotopy algorithm,
problem VII.14 is also piecewise linear along the homotopy
path, and for any value of σ , the following conditions should
be satisfied

xTi (Xα − y) = −((1− σ )wi + σ ŵi)ui for i ∈ 3 (a)

|xTi (Xα − y)| < (1− σ )wi + σ ŵi for i ∈ 3c (b)

(VII.15)

where xi is the i-th column of the measurement X , wi and ŵi
are the given weight and new obtained weight, respectively.
Moreover, for the optimal step size σ , when the homotopy
parameter changes from σ to σ + τ in the update direction δ,
the following optimality conditions also should be satisfied

XT3(Xα − y)+ τX
T
3Xδ

= −((1− σ )W + σ Ŵ )u+ τ (W − Ŵ )u (a)

|p− τq| ≤ r + τ s (b)

(VII.16)

where u is the sign sequence of α on its support 3,
pi = xTi (Xα − y), qi = xTi Xδ, ri = (1 − σ )wi + σ ŵi
and si = ŵi − wi. Thus, at the l-th stage (if (XTi Xi)

−1

exists), the update direction of the homotopy algorithm can
be computed by

δl =

{
(XT3X3)

−1(W − Ŵ )u, on 3
0, otherwise

(VII.17)

The step size which can lead to a critical point can be com-
puted by τ ∗l = min(τ+l , τ

−

l ), and τ+l and τ−l are computed by

τ+l = mini∈3c

(
ri − pi
qi − si

,
−ri − pi
qi + si

)
+

(VII.18)

τ−l = mini∈3

(
−αil

δil

)
+

(VII.19)

where τ+l is the minimum step size so that the index i+ should
be added into the support set and τ−l is the minimum step
size that shrinks the value of a nonzero active element to
zero at the index i−. The solution and homotopy parameter
are updated by αl+1 = αl + τ

∗
l δ, and σl+1 = σl + τ

∗
l ,

respectively. The homotopy algorithm updates its support set
and sign sequence accordingly until the new critical point
of the homotopy parameter σl+1 = 1. The main steps of
this algorithm are summarized in Algorithm 11 and more
information can be found in literature [96].

Algorithm 11 Iterative Reweighting Homotopy Algorithm
for Weighted l1-Norm Minimization
Task: To addrss the weighted l1-norm minimization:

α̂ = argmin 1
2‖Xα − y‖

2
2 +W‖α‖1

Input: Probe sample y, measurement matrix X .
Initialization: l = 1, initial solution αl and its support
set 3l , σ1 = 0.
Repeat:
Step 1: Compute update direction δl by using

Eq. (VII.17).
Step 2: Compute p, q, r and s by using Eq. (VII.16).
Step 2: Compute τ+l and τ−l by using Eq. (VII.18) and

Eq. (VII.19).
Step 3: Compute the step size τ ∗l by using

τ ∗l = min{τ+l , τ
−

l }.
Step 4: Update the solution αl+1 by using αl+1 =

αl + τ
∗
l δl .

Step 5: Update the support set:
If τ+l == τ

−

l then
Shrink the value to zero at the index i− and
remove i−, i.e. 3l+1 = 3l\i−.

else
Add the i+ into the support set, i.e. 3l+1

= 3l
⋃
i+

End if
Step 6: σl+1 = σl + τl and l = l + 1.

Until σl+1 = 1
Output: αl+1

D. OTHER HOMOTOPY ALGORITHMS
FOR SPARSE REPRESENTATION
The general principle of the homotopy method is to reach the
optimal solution along with the homotopy solution path by
evolving the homotopy parameter from a known initial value
to the final expected value. There are extensive hotomopy
algorithms, which are related to the sparse representationwith
the l1-norm regularization. Malioutov et al. first exploited the
homotopy method to choose a suitable parameter for l1-norm
regularization with a noisy term in an underdetermined
system and employed the homotopy continuation-based
method to solve BPDN for sparse signal processing [97].
Garrigues and Ghaoui [98] proposed a modified homotopy
algorithm to solve the Lasso problem with online observa-
tions by optimizing the homotopy parameter from the current
solution to the solution after obtaining the next new data
point. Efron et al. [43] proposed a basic pursuit denois-
ing (BPDN) homotopy algorithm, which shrinked the param-
eter to a final value with series of efficient optimization steps.
Similar to BPDN homotopy, Asif [99] presented a homotopy
algorithm for the Dantzing selector (DS) under the consider-
ation of primal and dual solution. Asif and Romberg [100]
proposed a framework of dynamic updating solutions for
solving l1-norm minimization programs based on homotopy
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algorithm and demonstrated its effectiveness in addressing
the decoding issue. More recent literature related to homo-
topy algorithms can be found in the streaming recovery
framework [101] and a summary [102].

VIII. THE APPLICATIONS OF THE SPARSE
REPRESENTATION METHOD
Sparse representation technique has been successfully imple-
mented to numerous applications, especially in the fields of
computer vision, image processing, pattern recognition and
machine learning. More specifically, sparse representation
has also been successfully applied to extensive real-world
applications, such as image denoising, deblurring, inpainting,
super-resolution, restoration, quality assessment, classifica-
tion, segmentation, signal processing, object tracking,
texture classification, image retrieval, bioinformatics,
biometrics and other artificial intelligence systems.
Moreover, dictionary learning is one of the most typical
representative examples of sparse representation for realizing
the sparse representation of a signal. In this paper, we only
concentrate on the three applications of sparse representa-
tion, i.e. sparse representation in dictionary learning, image
processing, image classification and visual tracking.

A. SPARSE REPRESENTATION IN DICTIONARY LEARNING
The history of modeling dictionary could be traced back
to 1960s, such as the fast Fourier transform (FFT) [103].
An over-complete dictionary that can lead to sparse represen-
tation is usually achieved by exploiting pre-specified set of
transformation functions, i.e. transform domain method [5],
or is devised based on learning, i.e. dictionary learning
methods [104]. Both of the transform domain and dictionary
learning based methods transform image samples into other
domains and the similarity of transformation coefficients are
exploited [105]. The difference between them is that the trans-
form domain methods usually utilize a group of fixed trans-
formation functions to represent the image samples, whereas
the dictionary learning methods apply sparse representations
on a over-complete dictionary with redundant information.
Moreover, exploiting the pre-specified transform matrix in
transform domain methods is attractive because of its fast
and simplicity. Specifically, the transform domain methods
usually represent the image patches by using the orthonor-
mal basis such as over-complete wavelets transform [106],
super-wavelet transform [107], bandelets [108], curvelets
transform [109], contourlets transform [110] and steerable
wavelet filters [111]. However, the dictionary learning
methods exploiting sparse representation have the potential
capabilities of outperforming the pre-determined dictionar-
ies based on transformation functions. Thus, in this subsec-
tion we only focus on the modern over-complete dictionary
learning methods.

An effective dictionary can lead to excellent reconstruc-
tion results and satisfactory applications, and the choice of
dictionary is also significant to the success of sparse
representation technique. Different tasks have different

dictionary learning rules. For example, image
classification requires that the dictionary contains discrim-
inative information such that the solution of sparse repre-
sentation possesses the capability of distinctiveness. The
purpose of dictionary learning is motivated from sparse
representation and aims to learn a faithful and effective
dictionary to largely approximate or simulate the specific
data. In this section, some parameters are defined as matrix
Y = [y1, y2, · · · , yN ], matrix X = [x1, x2, · · · , xN ]T , and
dictionary D = [d1, d2, · · · , dM ].

From the notations of the literature [23], [112], the
framework of dictionary learning can be generally formulated
as an optimization problem

arg min
D∈�,xi

{
1
N

N∑
i=1

(
1
2
‖yi − Dxi‖

2
2 + λP(xi))

}
(VIII.1)

where � = {D = [d1, d2, · · · , dM ] : dTi d i = 1,
i = 1, 2, · · · ,M} (M here may not be equal to N ), N denotes
the number of the known data set (eg. training samples in
image classification), yi is the i-th sample vector from a
known set, D is the learned dictionary and xi is the sparsity
vector. P(xi) and λ are the penalty or regularization term
and a tuning parameter, respectively. The regularization term
of problem VIII.1 controls the degree of sparsity. That is,
different kinds of the regularization terms can immensely
dominate the dictionary learning results.

One spontaneous idea of defining the penalty term P(xi)
is to introduce the l0-norm regularization, which leads to
the sparsest solution of problem VIII.1. As a result, the
theory of sparse representation can be applied to dictionary
learning. The most representative dictionary learning based
on the l0-norm penalty is the K-SVD algorithm [8], which is
widely used in image denoising. Because the solution of
l0-norm regularization is usually a NP-hard problem, utilizing
a convex relaxation strategy to replace l0-norm regularization
is an advisable choice for dictionary learning. As a convex
relaxation method of l0-norm regularization, the l1-norm reg-
ularization based dictionary learning has been proposed in
large numbers of dictionary learning schemes. In the stage of
convex relaxation methods, there are three optimal forms for
updating a dictionary: the one by one atom updating method,
group atoms updating method, and all atoms updating
method [112]. Furthermore, because of over-penalization in
l1-norm regularization, non-convex relaxation strategies also
have been employed to address dictionary learning problems.
For example, Fan and Li proposed a smoothly clipped abso-
lution deviation (SCAD) penalty [113], which employed an
iterative approximate Newton-Raphson method for penaliz-
ing least sequences and exploited the penalized likelihood
approaches for variable selection in linear regression models.
Zhang introduced and studied the non-convex minimax
concave (MC) family [114] of non-convex piecewise
quadratic penalties to make unbiased variable selection for
the estimation of regression coefficients, which was demon-
strated its effectiveness by employing an oracle inequality.
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Friedman proposed to use the logarithmic penalty for a model
selection [115] and used it to solve theminimization problems
with non-convex regularization terms. From the viewpoint of
updating strategy, most of the dictionary learning methods
always iteratively update the sparse approximation or repre-
sentation solution and the dictionary alternatively, and more
dictionary learning theoretical results and analyses can be
found in the literature [104], [116].

Recently, varieties of dictionary learning methods have
been proposed and researchers have attempted to exploit
different strategies for implementing dictionary learning
tasks based on sparse representation. There are several means
to categorize these dictionary learning algorithms into various
groups. For example, dictionary learning methods can be
divided into three groups in the context of different norms
utilized in the penalty term, that is, l0-norm regularization
based methods, convex relaxation methods and non-convex
relaxation methods [117]. Moreover, dictionary learning
algorithms can also be divided into three other categories
in the presence of different structures. The first category is
dictionary learning under the probabilistic framework such
as maximum likelihood methods [118], the method of opti-
mal directions (MOD) [119], and the maximum a posteriori
probability method [120]. The second category is clustering
based dictionary learning approaches such as KSVD [121],
which can be viewed as a generalization of K -means. The
third category is dictionary learning with certain structures,
which are grouped into two significative aspects, i.e. directly
modeling the relationship between each atom and structuring
the corrections between each atom with purposive sparsity
penalty functions. There are two typical models for these
kinds of dictionary learning algorithms, sparse and
shift-invariant representation of dictionary learning and struc-
ture sparse regularization based dictionary learning, such
as hierarchical sparse dictionary learning [122] and group
or block sparse dictionary learning [123]. Recently, some
researchers [23] categorized the latest methods of dictionary
learning into four groups, online dictionary learning [124],
joint dictionary learning [125], discriminative dictionary
learning [126], and supervised dictionary learning [127].

Although there are extensive strategies to divide the
available sparse representation based dictionary learning
methods into different categories, the strategy used here
is to categorize the current prevailing dictionary learning
approaches into two main classes: supervised dictionary
learning and unsupervised dictionary learning, and then spe-
cific representative algorithms are explicitly introduced.

1) UNSUPERVISED DICTIONARY LEARNING
From the viewpoint of theoretical basis, the main difference
of unsupervised and supervised dictionary learning relies on
whether the class label is exploited in the process of learning
for obtaining the dictionary. Unsupervised dictionary learn-
ing methods have been widely implemented to solve image
processing problems, such as image compression, and feature
coding of image representation [128], [129].

a: KSVD FOR UNSUPERVISED DICTIONARY LEARNING
One of the most representative unsupervised dictionary
learning algorithms is the KSVD method [121], which is a
modification or an extension of method of directions (MOD)
algorithm. The objective function of KSVD is

argmin
D,X
{‖Y − DX‖2F } s.t. ‖xi‖0 ≤ k, i = 1, 2, · · · ,N

(VIII.2)

where Y ∈ Rd×N is the matrix composed of all the known
examples, D ∈ Rd×N is the learned dictionary, X ∈ RN×N

is the matrix of coefficients, k is the limit of sparsity and
xi denotes the i-th row vector of the matrix X . Problem VIII.2
is a joint optimization problem with respect to D and X , and
the natural method is to alternatively optimize the D and X
iteratively.

More specifically, when fixing dictionary D,
problem VIII.2 is converted to

argmin
X
‖Y − DX‖2F s.t. ‖xi‖0 ≤ k, i = 1, 2, · · · ,N

(VIII.3)

which is called sparse coding and k is the limit of sparsity.
Then, its subproblem is considered as follows:

argmin
xi
‖yi − Dxi‖

2
2 s.t. ‖xi‖0 ≤ k, i = 1, 2, · · · ,N

where we can iteratively resort to the classical sparse repre-
sentation with l0-norm regularization such as MP and OMP,
for estimating xi.
When fixing X , problem VIII.3 becomes a simple

regression model for obtaining D, that is

D̂ = argmin
D
‖Y − DX‖2F (VIII.4)

where D̂ = YX†
= YXT (XXT )−1 and the method is called

MOD. Considering that the computational complexity of the
inverse problem in solving problem VIII.4 is O(n3), it is
favorable, for further improvement, to update dictionary D
by fixing the other variables. The strategy of the KSVD
algorithm rewrites the problem VIII.4 into

D̂ = argmin
D
‖Y − DX‖2F = argmin

D
‖Y −

N∑
j=1

d jxTj ‖
2
F

= argmin
D
‖(Y −

∑
j6=l

d jxTj )− d lx
T
l ‖

2
F (VIII.5)

where xj is the j-th row vector of thematrixX . First the overall
representation residual El = Y−

∑
j 6=l d jx

T
j is computed, and

then d l and xl are updated. In order to maintain the sparsity
of xTl in this step, only the nonzero elements of xTl should
be preserved and only the nonzero items of El should be
reserved, i.e. EPl , from d lxTl . Then, SVD decomposes EPl into
EPl = U3V T , and then updates dictionary d l . The specific
KSVD algorithm for dictionary learning is summarized to
Algorithm 12 and more information can be found in the
literature [121].
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Algorithm 12 The K-SVD Algorithm for Dictionary
Learning
Task: Learning a dictionary D: argminD,X ‖Y − DX‖2F
s.t. ‖xi‖0 ≤ k, i = 1, 2, · · · ,N
Input: The matrix composed of given samples Y =

[y1, y2, · · · , ym].
Initialization: Set the initial dictionary D to the l2–norm
unit matrix, i = 1.
While not converged do
Step 1: For each given example yi, employing the classical

sparse representation with l0-norm regularization
solve problem VIII.3 for further estimating X i,
set l = 1.
While l is not equal to k do

Step 2: Compute the overall representation
residual El = Y −

∑
j 6=l d jx

T
j .

Step 3: Extract the column items of El
which corresponds to the nonzero
elements of xTl and obtain EPl .

Step 4: SVD decomposes EPl into EPl =
U3V T .

Step 5: Update d l to the first column of U
and update corresponding
coefficients in xTl by 3(1, 1)
times the first column of V .

Step 6: l = l + 1.
End While

Step 7: i = i+ 1.
End While
Output: dictionary D

b: LOCALITY CONSTRAINED LINEAR CODING FOR
UNSUPERVISED DICTIONARY LEARNING
The locality constrained linear coding (LLC)
algorithm [129] is an efficient local coordinate linear coding
method, which projects each descriptor into a local constraint
system to obtain an effective codebook or dictionary. It has
been demonstrated that the property of locality is more essen-
tial than sparsity, because the locality must lead to sparsity
but not vice-versa, that is, a necessary condition of sparsity is
locality, but not the reverse [129].

Assume that Y = [y1, y2, · · · , yN ] ∈ Rd×N is a matrix
composed of local descriptors extracted from examples and
the objective dictionary D = [d1, d2, · · · , dN ] ∈ Rd×N . The
objective function of LLC is formulated as

argmin
xi,D

N∑
i=1

‖yi − Dxi‖
2
2 + µ‖b� xi‖22

s.t. 1T xi = 1, i = 1, 2, · · · ,N (VIII.6)

where µ is a small constant as a regularization parameter
for adjusting the weighting decay speed, � is the operator
of the element-wise multiplication, xi is the code for yi,
1 ∈ RN×1 is defined as a vector with all elements as 1 and
vector b is the locality adaptor, which is, more specifically,

set as

b = exp
(
dist(yi,D)

σ

)
(VIII.7)

where dist(yi,D) = [dist(yi, d1), · · · , dist(yi, dN )] and
dist(yi, d j) denotes the distance between yi and d j with
different distance metrics, such as Euclidean distance and
Chebyshev distance. Specifically, the i-th value of vector b
is defined as bi = exp

(
dist(yi,di)

σ

)
.

The K -Means clustering algorithm is applied to gener-
ate the codebook D, and then the solution of LLC can be
deduced as:

x̂i = (Ci + µ diag2(b))\1 (VIII.8)
xi = x̂i/1T x̂i (VIII.9)

where the operator a\b denotes a−1b, and Ci = (DT − 1yTi )
(DT − 1yTi )

T is the covariance matrix with respect to yi. This
is called the LLC algorithm. Furthermore, the incremental
codebook optimization algorithm has also been proposed
to obtain a more effective and optimal codebook, and the
objective function is reformulated as

argmin
xi,D

N∑
i=1

‖yi − Dxi‖
2
2 + µ‖b� xi‖22

s.t. 1T xi = 1, ∀i; ‖d j‖22 ≤ 1,∀j (VIII.10)

Actually, the problem VIII.10 is a process of feature
extraction and the property of ‘locality’ is achieved by
constructing a local coordinate system by exploiting the local
bases for each descriptor, and the local bases in the algo-
rithm are simply obtained by using the K nearest neighbors
of yi. The incremental codebook optimization algorithm in
problem VIII.10 is a joint optimization problem with respect
to D and xi, and it can be solved by iteratively optimizing
one when fixing the other alternatively. The main steps of
the incremental codebook optimization algorithm are
summarized in Algorithm 13 and more information can be
found in the literature [129].

c: OTHERUNSUPERVISEDDICTIONARYLEARNINGMETHODS
A large number of different unsupervised dictionary
learning methods have been proposed. The KSVD algorithm
and LLC algorithm are only two typical unsupervised
dictionary learning algorithms based on sparse representa-
tion. Additionally, Jenatton et al. [122] proposed a tree-
structured dictionary learning problem, which exploited
tree-structured sparse regularization to model the relation-
ship between each atom and defined a proximal operator to
solve the primal-dual problem. Zhou et al. [130] developed
a nonparametric Bayesian dictionary learning algorithm,
which utilized hierarchical Bayesian to model parameters and
employed the truncated beta-Bernoulli process to learn the
dictionary. Ramirez and Sapiro [131] employed minimum
description length to model an effective framework of sparse
representation and dictionary learning, and this framework
could conveniently incorporate prior information into the
process of sparse representation and dictionary learning.
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Algorithm 13 The Incremental Codebook Optimization
Algorithm
Task: Learning a dictionary D: argminxi,D

∑N
i=1 ‖yi−

Dxi‖22 + µ‖b� xi‖22 s.t. 1T xi = 1, ∀i; ‖d j‖22 ≤ 1,∀j

Input: The matrix composed of given samples Y =

[y1, y2, · · · , yN ].
Initialization: i = 1, ε = 0.01, D initialized by K -Means
clustering algorithm.
While i is not equal to N do
Step 1: Initialize b with 1× N zero vector.
Step 2: Update locality constraint parameter b with

bj = exp
(
−
dist(yi, d j)

σ

)
for ∀j.

Step 3: Normalize b using the equation b = b−bmin
bmax−bmin

.
Step 4: Exploit the LLC coding algorithm to obtain xi.
Step 5: Keep the set of Di, whose corresponding entries

of the code xi are greater than ε, and drop out
other elements, i.e. index←{j | abs{xi(j)}>ε}∀j
and Di← D(:, index).

Step 6: Update xi exploiting argmax ‖yi − D
ixi‖22

s.t. 1T xi = 1.
Step 7: Update dictionary D using a classical gradient

descent method with respect to problem VIII.6.
Step 8: i = i+ 1.

End While
Output: dictionary D

Some other unsupervised dictionary learning algorithms
also have been validated. Mairal et al. proposed an online
dictionary learning [132] algorithm based on stochastic
approximations, which treated the dictionary learning prob-
lem as the optimization of a smooth convex problem over
a convex set and employed an iterative online algorithm
at each step to solve the subproblems. Yang and Zhang
proposed a sparse variation dictionary learning (SVDL)
algorithm [133] for face recognition with a single training
sample, in which a joint learning framework of adaptive
projection and a sparse variation dictionary with sparse
bases were simultaneously constructed from the gallery
image set to the generic image set. Shi et al. proposed
a minimax concave penalty based sparse dictionary
learning (MCPSDL) [112] algorithm, which employed a
non-convex relaxation online scheme, i.e. a minimax con-
cave penalty, instead of using regular convex relaxation
approaches as approximation of l0-norm penalty in sparse
representation problem, and designed a coordinate descend
algorithm to optimize it. Bao et al. proposed a dictionary
learning by proximal algorithm (DLPM) [117], which pro-
vided an efficient alternating proximal algorithm for solving
the l0-norm minimization based dictionary learning problem
and demonstrated its global convergence property.

2) SUPERVISED DICTIONARY LEARNING
Unsupervised dictionary learning just considers that the
examples can be sparsely represented by the learned

dictionary and leaves out the label information of the
examples. Thus, unsupervised dictionary learning can
perform very well in data reconstruction, such as image
denoising and image compressing, but is not beneficial to
perform classification. On the contrary, supervised dictionary
learning embeds the class label into the process of sparse
representation and dictionary learning so that this leads to
the learned dictionary with discriminative information for
effective classification.

a: DISCRIMINATIVE KSVD FOR DICTIONARY LEARNING
Discriminative KSVD (DKSVD) [126] was designed to solve
image classification problems. Considering the priorities of
supervised learning theory in classification, DKSVD incor-
porates the dictionary learning with discriminative informa-
tion and classifier parameters into the objective function and
employs the KSVD algorithm to obtain the global optimal
solution for all parameters. The objective function of the
DKSVD algorithm is formulated as

〈D,C,X〉 = arg min
D,C,X

‖Y − DX‖2F + µ‖H − CX‖
2
F

+ η‖C‖2F s.t. ‖xi‖0 ≤ k (VIII.11)

where Y is the given input samples, D is the learned dictio-
nary, X is the coefficient term, H is the matrix composed
of label information corresponding to Y , C is the parameter
term for classifier, and η and µ are the weights. With a
view to the framework of KSVD, problem VIII.11 can be
rewritten as

〈D,C,X〉 = arg min
D,C,X

‖

(
Y
√
µH

)
−

(
D
√
µC

)
X‖2F

+ η‖C‖2F s.t. ‖xi‖0 ≤ k (VIII.12)

In consideration of the KSVD algorithm, each column
of the dictionary will be normalized to l2-norm unit vector

and
(

D
√
µC

)
will also be normalized, and then the penalty

term ‖C‖2F will be dropped out and problem VIII.12 will be
reformulated as

〈Z ,X〉 = argmin
Z ,X
‖W − ZX‖2F s.t. ‖xi‖0 ≤ k (VIII.13)

where W =

(
Y
√
µH

)
, Z =

(
D
√
µC

)
and apparently

the formulation VIII.13 is the same as the framework of
KSVD [121] in Eq. VIII.2 and it can be efficiently solved
by the KSVD algorithm.

More specifically, the DKSVD algorithm contains
two main phases: the training phase and classification phase.
For the training phase, Y is the matrix composed of the
training samples and the objective is to learn a discrimina-
tive dictionary D and the classifier parameter C . DKSVD
updates Z column by column and for each column
vector zi, DKSVD employs the KSVD algorithm
to obtain zi and its corresponding weight. Then, the DKSVD
algorithm normalizes the dictionary D and classifier
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parameter C by

D′ = [d ′1, d
′

2, · · · , d
′
M ] = [

d1
‖d1‖

,
d2
‖d2‖

, · · · ,
dM
‖dM‖

]

C ′ = [c′1, c
′

2, · · · , c
′
M ] = [

c1
‖d1‖

,
c2
‖d2‖

, · · · ,
cM
‖dM‖

]

x′i = xi × ‖d i‖ (VIII.14)

For the classification phase, Y is the matrix composed
of the test samples. Based on the obtained learning results
D′ and C ′, the sparse coefficient matrix x̂i can be obtained for
each test sample yi by exploiting the OMP algorithm, which
is to solve

x̂i = argmin ‖yi − D
′x′i‖

2
2 s.t. ‖x′i‖0 ≤ k (VIII.15)

On the basis of the corresponding sparse coefficient x̂i, the
final classification, for each test sample yi, can be performed
by judging the label result by multiplying x̂i by classifier C ′,
that is,

label = C ′ × x̂i (VIII.16)

where the label is the final predicted label vector. The class
label of yi is the determined class index of label.
The main highlight of DKSVD is that it employs the

framework of KSVD to simultaneously learn a discrimina-
tive dictionary and classifier parameter, and then utilizes the
efficient OMP algorithm to obtain a sparse representation
solution and finally integrate the sparse solution and learned
classifier for ultimate effective classification.

b: LABEL CONSISTENT KSVD FOR DISCRIMINATIVE
DICTIONARY LEARNING
Because of the classification term, a competent dictionary
can lead to effectively classification results. The original
sparse representation for face recognition [20] regards the
raw data as the dictionary, and then reports its promising
classification results. In this section, a label consistent
KSVD (LC-KSVD) [134], [135] is introduced to learn an
effective discriminative dictionary for image classification.
As an extension of D-KSVD, LC-KSVD exploits the super-
vised information to learn the dictionary and integrates the
process of constructing the dictionary and optimal linear clas-
sifier into a mixed reconstructive and discriminative objective
function, and then jointly obtains the learned dictionary and
an effective classifier. The objective function of LC-KSVD is
formulated as

〈D,A,C,X〉 = arg min
D,A,C,X

‖Y − DX‖2F + µ‖L − AX‖
2
F

+η‖H − CX‖2F s.t. ‖xi‖0 ≤ k (VIII.17)

where the first term denotes the reconstruction error, the
second term denotes the discriminative sparse-code error, and
the final term denotes the classification error. Y is the matrix
composed of all the input data, D is the learned dictionary,
X is the sparse code term, µ and η are the weights of the
corresponding contribution items, A is a linear transforma-
tion matrix, H is the matrix composed of label information
corresponding to Y , C is the parameter term for classifier

and L is a joint label matrix for labels of Y and D. For
example, providing that Y = [y1 . . . y4] and D = [d1 . . . d4]
where y1, y2, d1 and d2 are from the first class, and y3, y4, d3
and d4 are from the second class, and then the joint label

matrix L can be defined as L =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

. Similar

to the DKSVD algorithm, the objective function VIII.17 can
also be reformulated as

〈Z ,X〉 = argmin
Z ,X
‖T − ZX‖22 s.t. ‖xi‖0 ≤ k (VIII.18)

where T =

 Y
√
µL
√
ηH

, Z =

 D
√
µA
√
ηC

.

The learning process of the LC-KSVD algorithm, as is
DKSVD, can be separated into two sections, the training term
and the classification term. In the training section, since prob-
lemVIII.18 completely satisfies the framework of KSVD, the
KSVD algorithm is applied to update Z atom by atom and
compute X . Thus Z and X can be obtained. Then, the
LC-KSVD algorithm normalizes dictionary D, transform
matrix A, and the classifier parameter C by

D′ = [d ′1, d
′

2, · · · , d
′
M ] = [

d1
‖d1‖

,
d2
‖d2‖

, · · · ,
dM
‖dM‖

]

A′ = [a′1, a
′

2, · · · , a
′
M ] = [

a1
‖d1‖

,
a2
‖d2‖

, · · · ,
aM
‖dM‖

]

C ′ = [c′1, c
′

2, · · · , c
′
M ] = [

c1
‖d1‖

,
c2
‖d2‖

, · · · ,
cM
‖dM‖

]

(VIII.19)

In the classification section, Y is the matrix composed of
the test samples. On the basis of the obtained dictionary D′,
the sparse coefficient x̂i can be obtained for each test sam-
ple yi by exploiting the OMP algorithm, which is to solve

x̂i = argmin ‖yi − D
′x′i‖

2
2 s.t. ‖x′i‖0 ≤ k (VIII.20)

The final classification is based on a simple linear
predictive function

l = argmax
f
{ f = C ′ × x̂i} (VIII.21)

where f is the final predicting label vector and the test
sample yi is classified as a member of the l-th class.
The main contribution of LC-KSVD is to jointly incor-

porate the discriminative sparse coding term and classifier
parameter term into the objective function for learning a
discriminative dictionary and classifier parameter. The
LC-KSVDdemonstrates that the obtained solution, compared
to other methods, can prevent learning a suboptimal or local
optimal solution in the process of learning a dictionary [134].

c: FISHER DISCRIMINATION DICTIONARY LEARNING
FOR SPARSE REPRESENTATION
Fisher discrimination dictionary learning (FDDL) [136]
incorporates the supervised information (class label informa-
tion) and the Fisher discrimination message into the objective
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function for learning a structured discriminative dictionary,
which is used for pattern classification. The general model of
FDDL is formulated as

J (D,X ) = argmin
D,X
{f (Y ,D,X )+ µ‖X‖1 + ηg(X )}

(VIII.22)

where Y is the matrix composed of input data, D is the
learned dictionary, X is the sparse solution, and µ and η are
two constants for tradeoff contributions. The first component
is the discriminative fidelity term, the second component is
the sparse regularization term, and the third component is the
discriminative coefficient term, such as Fisher discrimination
criterion in Eq. (VIII.23).

Considering the importance of the supervised information,
i.e. label information, in classification, FDDL respectively
updates the dictionary and computes the sparse representation
solution class by class. Assume that Y i denotes the matrix
of i-th class of input data, vector X i denotes the sparse
representation coefficient of the learned dictionary D over
Y i and X ij denotes the matrix composed of the sparse
representation solutions, which correspond to the j-th class
coefficients from X i. Di is denoted as the learned dictionary
corresponding to the i-th class. Thus, the objective function
of FDDL is

J (D,X ) = argmin
D,X

(
c∑
i=1

f (Y i,D,X i)+ µ‖X‖1

+η(tr(SW (X )− SB(X ))+ λ‖X‖2F )) (VIII.23)

where f (Y i,D,X i) = ‖Y i − DX i‖2F + ‖Y
i
− DiX ii ‖

2
F +∑

j 6=i ‖D
jX ij ‖

2
F and SW (X ) and SB(X ) are the within-class

scatter of X and between-class scatter of X , respectively.
c is the number of the classes. To solve problem VIII.23,
a natural idea of optimization is to alternatively optimize
D and X class by class, and then the process of optimization
is briefly introduced.

When fixingD, problem VIII.23 can be solved by comput-
ing X i class by class, and its sub-problem is formulated as

J (X i) = argmin
X i

(
f (Y i,D,X i)+ µ‖X i‖1 + ηg(X i)

)
(VIII.24)

where g(X i) = ‖X i −Mi‖
2
F −

∑c
t=1 ‖Mt −M‖2F + λ‖X

i
‖
2
F

and Mj and M denote the mean matrices corresponding to
the j-th class of X i and X i, respectively. Problem VIII.23 can
be solved by the iterative projection method in the
literature [137].

When fixing α, problem VIII.23 can be rewritten as

J (D) = argmin
D

(‖Y i − DiX i −
∑
j 6=i

DjX j‖2F

+ ‖Y i − DiX ii ‖
2
F +

∑
j 6=i

‖DiX ij ‖
2
F )

(VIII.25)

where X i here denotes the sparse representation
of Y over Di. In this section, each column of the learned

dictionary is normalized to a unit vector with l2-norm. The
optimization of problem VIII.25 computes the dictionary
class by class and it can be solved by exploiting the algorithm
in the literature [138].

The main contribution of the FDDL algorithm lies in
combining the Fisher discrimination criterion into the
process of dictionary learning. The discriminative power
comes from the method of constructing the discriminative
dictionary using the function f in problem VIII.22 and simul-
taneously formulates the discriminative sparse representation
coefficients by exploiting the function g in problem VIII.22.

d: OTHER SUPERVISED DICTIONARY LEARNING
FOR SPARSE REPRESENTATION
Unlike unsupervised dictionary learning, supervised
dictionary learning emphasizes the significance of the class
label information and incorporates it into the learning
process to enforce the discrimination of the learned
dictionary. Recently, massive supervised dictionary
learning algorithms have been proposed. For example,
Yang et al. [138] presented a metaface dictionary learn-
ing method, which is motivated by ‘metagenes’ in gene
expression data analysis. Ramirez et al. [139] produced a
discriminative non-parametric dictionary learning (DNDL)
framework based on the OMP algorithm for image clas-
sification. Kong and Wang [140] introduced a learned
dictionary with commonalty and particularity, called
DL-COPAR, which integrated an incoherence penalty term
into the objective function for obtaining the class-specific
sub-dictionary. Gao et al. [141] learned a hybrid dictio-
nary, i.e. category-specific dictionary and shared dictio-
nary, which incorporated a cross-dictionary incoherence
penalty and self-dictionary incoherence penalty into the
objective function for learning a discriminative dictionary.
Jafari and Plumbley [142] presented a greedy adaptive dic-
tionary learning method, which updated the learned dictio-
nary with a minimum sparsity index. Some other supervised
dictionary learning methods are also competent in image
classification, such as supervised dictionary learning in [143].
Zhou et al. [144] developed a joint dictionary learning
algorithm for object categorization, which jointly learned a
commonly shared dictionary and multiply category-specific
dictionaries for correlated object classes and incorporated
the Fisher discriminant fidelity term into the process of
dictionary learning. Ramirez et al. proposed a method of dic-
tionary learning with structured incoherence (DLSI) [139],
which unified the dictionary learning and sparse decom-
position into a sparse dictionary learning framework for
image classification and data clustering. Ma et al. presented a
discriminative low-rank dictionary learning for sparse
representation (DLRD_SR) [145], in which the sparsity and
the low-rank properties were integrated into one dictionary
learning scheme where sub-dictionary with discriminative
power was required to be low-rank. Lu et al. developed a
simultaneous feature and dictionary learning [146] method
for face recognition, which jointly learned the feature
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projection matrix for subspace learning and the
discriminative structured dictionary. Yang et al. introduced a
latent dictionary learning (LDL) [147] method for sparse rep-
resentation based image classification, which simultaneously
learned a discriminative dictionary and a latent representation
model based on the correlations between label information
and dictionary atoms. Jiang et al. presented a submodular
dictionary learning (SDL) [148] method, which integrated the
entropy rate of a randomwalk on a graph and a discriminative
term into a unified objective function and devised a greedy-
based approach to optimize it. Si et al. developed a support
vector guided dictionary learning (SVGDL) [149] method,
which constructed a discriminative term by using adaptively
weighted summation of the squared distances for all pairwise
of the sparse representation solutions.

B. SPARSE REPRESENTATION IN IMAGE PROCESSING
Recently, sparse representation methods have been
extensively applied to numerous real-world applicat-
ions [150], [151]. The techniques of sparse representation
have been gradually extended and introduced to image
processing, such as super-resolution image processing, image
denoising and image restoration.

First, the general framework of image processing using
sparse representation especially for image reconstruction
should be introduced:

Step 1: Partition the degraded image into overlapped
patches or blocks.

Step 2: Construct a dictionary, denoted as D, and assume
that the following sparse representation formulation should
be satisfied for each patch or block x of the image:

α̂ = argmin ‖α‖p s.t. ‖x − HDα‖22 ≤ ε

where H is a degradation matrix and 0 ≤ p ≤ 1.
Step 3: Reconstruct each patch or block by exploiting

x̂ = Dα̂.
Step 4: Put the reconstructed patch to the image at

the corresponding location and average each overlapped
patches to make the reconstructed image more consistent and
natural.

Step 5: Repeat step 1 to 4 several times till a termination
condition is satisfied.

The following part of this subsection is to explicitly intro-
duce some image processing techniques using sparse repre-
sentation.

The main task of super-resolution image processing is to
extract the high super-resolution image from its low resolu-
tion counterpart and this challenging problem has attracted
much attention. The most representative work was proposed
to exploit the sparse representation theory to generate a super-
resolution (SRSR) image from a single low-resolution image
in literature [152].

SRSR is mainly performed on two compact learned
dictionaries Dl and Dh, which are denoted as dictionar-
ies of low-resolution image patches and its corresponding
high-resolution image patches, respectively. Dl is directly

employed to recover high-resolution images from
dictionary Dh. Let X and Y denote the high-resolution and its
corresponding low-resolution images, respectively. x and y
are a high-resolution image patch and its corresponding
low-resolution image patch, respectively. Thus, x = Py and
P is the projection matrix. Moreover, if the low resolution
image Y is produced by down-sampling and blurring from
the high resolution image X , the following reconstruction
constraint should be satisfied

Y = SBX (VIII.26)

where S and B are a downsampling operator and a blurring
filter, respectively. However, the solution of problem VIII.26
is ill-posed because infinite solutions can be achieved for
a given low-resolution input image Y . To this end,
SRSR [152] provides a prior knowledge assumption, which
is formulated as

x = Dhα s.t. ‖α‖0 ≤ k (VIII.27)

where k is a small constant. This assumption gives a prior
knowledge condition that any image patch x can be
approximately represented by a linear combination of
a few training samples from dictionary Dh. As presented
in Subsection III-B, problem VIII.27 is an NP-hard problem
and sparse representation with l1-norm regularization is intro-
duced. If the desired representation solution α is sufficiently
sparse, problem VIII.27 can be converted into the following
problem:

argmin ‖α‖1 s.t. ‖x− Dhα‖22 ≤ ε (VIII.28)

or

argmin ‖x− Dhα‖22 + λ‖α‖1 (VIII.29)

where ε is a small constant and λ is the Lagrange mul-
tiplier. The solution of problem VIII.28 can be achieved
by two main phases, i.e. local model based sparse rep-
resentation (LMBSR) and enhanced global reconstruction
constraint. The first phase of SRSR, i.e. LMBSR, is operated
on each image patch, and for each low-resolution image
patch y, the following equation is satisfied

argmin ‖Fy− FDlα‖22 + λ‖α‖1 (VIII.30)

where F is a feature extraction operator. One-pass algorithm
similar to that of [153] is introduced to enhance the
compatibility between adjacent patches. Furthermore, a mod-
ified optimization problem is proposed to guarantee that the
super-resolution reconstruction coincides with the previously
obtained adjacent high-resolution patches, and the problem is
reformulated as

argmin ‖α‖1 s.t. ‖Fy− FDlα‖22≤ε1; ‖v− LDhα‖
2
2≤ε2

(VIII.31)

where v is the previously obtained high-resolution image on
the overlap region, and L refers to the region of overlap
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between the current patch and previously obtained high-
resolution image. Thus problem VIII.31 can be rewritten as

argmin ‖ŷ− Dα‖22 + λ‖α‖1 (VIII.32)

where ŷ =
[
Fy
v

]
and D =

[
FDl
LDh

]
. Problem VIII.32 can be

simply solved by previously introduced solution of the sparse
representation with l1-norm minimization. Assume that the
optimal solution of problem VIII.32, i.e. α∗, is achieved, the
high-resolution patch can be easily reconstructed by
x = Dhα∗.

The second phase of SRSR enforces the global recon-
struction constraint to eliminate possible unconformity or
noise from the first phase and make the obtained image more
consistent and compatible. Suppose that the high-resolution
image obtained by the first phase is denoted as matrix X0,
we project X0 onto the solution space of the reconstruction
constraint VIII.26 and the problem is formulated
as follows

X∗ = argmin ‖X − X0‖22 s.t. Y = SBX (VIII.33)

Problem VIII.33 can be solved by the back-projection
method in [154] and the obtained image X∗ is regarded
as the final optimal high-resolution image. The entire
super-resolution via sparse representation is summarized in
Algorithm 14 and more information can be found in the
literature [152].

Algorithm 14 Super-Resolution via Sparse Representation
Input: Training image patches dictionaries Dl and Dh,
a low-resolution image Y .
For each overlapped 3 × 3 patches y of Y using one-pass
algorithm, from left to right and top to bottom
Step 1: Compute optimal sparse representation

coefficients α∗ in problem (VIII.32).
Step 2: Compute the high-resolution patch by x = Dhα∗.
Step 3: Put the patch x into a high-resolution image X0

in corresponding location.
End
Step 4: Compute the final super-resolution image X∗ in

problem (VIII.33).
Output: X∗

Furthermore, extensive other methods based on sparse
representation have been proposed to solve the super-
resolution image processing problem. For example,
Yang et al. presented a modified version called joint dic-
tionary learning via sparse representation (JDLSR) [155],
which jointly learned two dictionaries that enforced the
similarity of sparse representation for low-resolution and
high-resolution images. Tang et al. [156] first explicitly
analyzed the rationales of the sparse representation theory
in performing the super-resolution task, and proposed to
exploit the L2-Boosting strategy to learn coupled dictionaries,

which were employed to construct sparse coding space.
Zhang et al. [157] presented an image super-resolution
reconstruction scheme by employing the dual-dictionary
learning and sparse representation method for image super-
resolution reconstruction and Gao et al. [158] proposed
a sparse neighbor embedding method, which incorporated
the sparse neighbor search and HoG clustering method
into the process of image super-resolution reconstruction.
Fernandez-Granda and Candès [159] designed a transform-
invariant group sparse regularizer by implementing a
data-driven non-parametric regularizers with learned domain
transform on group sparse representation for high image
super-resolution. Lu et al. [160] proposed a geometry con-
strained sparse representation method for single image super-
resolution by jointly obtaining an optimal sparse solution
and learning a discriminative and reconstructive dictionary.
Dong et al. [161] proposed to harness an adaptive sparse
optimization with nonlocal regularization based on adaptive
principal component analysis enhanced by nonlocal similar
patch grouping and nonlocal self-similarity quadratic
constraint to solve the image high super-resolution problem.
Dong et al. [162] proposed to integrate an adaptive sparse
domain selection and an adaptive regularization based on
piecewise autoregressive models into the sparse represen-
tations framework for single image super-resolution recon-
struction. Mallat and Yu [163] proposed a sparse mixing
estimator for image super-resolution, which introduced an
adaptive estimator models by combining a group of linear
inverse estimators based on different prior knowledge for
sparse representation.

Noise in an image is unavoidable in the process of image
acquisition. The need for sparse representation may arise
when noise exists in image data. In such a case, the image
with noise may lead to missing information or distortion such
that this results in a decrease of the precision and accuracy of
image processing. Eliminating such noise is greatly beneficial
to many applications. The main goal of image denoising is
to distinguish the actual signal and noise signal so that we
can remove the noise and reconstruct the genuine image.
In the presence of image sparsity and redundancy representa-
tion [4], [7], sparse representation for image denoising first
extracts the sparse image components, which are regarded
as useful information, and then abandons the representa-
tion residual, which is treated as the image noise term, and
finally reconstructs the image exploiting the pre-obtained
sparse components, i.e. noise-free image. Extensive research
articles for image denoising based on sparse representation
have been published. For example, Bruckstein et al. [8],
Donoho and Tsaig [30], and Donoho [165] first discovered
the connection between the compressed sensing and image
denoising. Subsequently, the most representative work of
using sparse representation to make image denoising was
proposed in literature [165], in which a global sparse repre-
sentationmodel over learned dictionaries (SRMLD)was used
for image denoising. The following prior assumption should
be satisfied: every image block of image x, denoted as z, can
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be sparsely represented over a dictionary D, i.e. the solution
of the following problem is sufficiently sparse:

argmin
α
‖α‖0 s.t. Dα = z (VIII.34)

And an equivalent problem can be reformulated for a proper
value of λ, i.e.

argmin
α
‖Dα − z‖22 + λ‖α‖0 (VIII.35)

If we take the above prior knowledge into full consideration,
the objective function of SRMLD based on Bayesian
treatment is formulated as

arg min
D,αi,x

δ‖x− y‖22 +
M∑
i=1

‖Dαi − Pix‖22 +
M∑
i=1

λi‖αi‖0

(VIII.36)

where x is the finally denoised image, y the measured
image with white and additive Gaussian white noise, Pi is
a projection operator that extracts the i-th block from image x,
M is the number of the overlapping blocks, D is the learned
dictionary, αi is the coefficients vector, δ is the weight of the
first term and λi is the Lagrange multiplier. The first term
in VIII.36 is the log-likelihood global constraint such that
the obtained noise-free image x is sufficiently similar to the
original image y. The second and third terms are the prior
knowledge of the Bayesian treatment, which is presented
in problem VIII.35. The optimization of problem VIII.35 is
a joint optimization problem with respect to D, αi and x.
It can be solved by alternatively optimizing one variable
when fixing the others. The process of optimization is briefly
introduced below.

When dictionary D and the solution of sparse
representation αi are fixed, problem VIII.36 can be
rewritten as

argmin
x
δ‖x− y‖22 +

M∑
i=1

‖Dαi − z‖22 (VIII.37)

where z = Pix. Apparently, problem VIII.37 is a simple
convex optimization problem and has a closed-form solution,
which is given by

x =

(
M∑
i=1

PTi Pi + δI

)−1 ( M∑
i=1

PTi Dαi + δy

)−1
(VIII.38)

When x is given, problem (VIII.36) can be written as

argmin
D,αi

M∑
i=1

‖Dαi − Pix‖22 +
M∑
i=1

λi‖αi‖0 (VIII.39)

where the problem can be divided into M sub-problems and
the i-th sub-problem can be reformulated as the following
dictionary learning problem:

argmin
D,αi
‖Dαi − z‖22 s.t. ‖αi‖0 ≤ τ (VIII.40)

where z = Pix and τ is small constant. One can see
that the sub-problem VIII.39 is the same as problem VIII.2

and it can be solved by the KSVD algorithm previously
presented in Subsection VIII-A2. The algorithm
of image denoising exploiting sparse and redundant
representation over learned dictionary is summarized
in Algorithm 15, and more information can be found in
literature [165].

Algorithm 15 Image Denoising via Sparse and Redundant
Representation Over Learned Dictionary
Task: To denoise a measured image y from white and
additional Gaussian white noise:
argminD,αi,x δ‖x−y‖

2
2+
∑M

i=1 ‖Dαi−Pix‖
2
2+
∑M

i=1 λi‖αi‖0

Input: Measured image sample y, the number of training
iteration T .
Initialization: t = 1, set x = y, D initialized by an
overcomplete DCT dictionary.
While t ≤ T do
Step 1: For each image patch Pix, employ the KSVD

algorithm to update the values of sparse representation
solution αi and corresponding dictionary D.
Step 2: t = t + 1

End While
Step 3: Compute the value of x by using Eq. (VIII.38).

Output: denoised image x

Moreover, extensive modified sparse representation based
image denoising algorithms have been proposed. For
example, Dabov et al. [166] proposed an enhanced sparse rep-
resentation with a block-matching 3-D (BM3D) transform-
domain filter based on self-similarities and an enhanced
sparse representation by clustering similar 2-D image patches
into 3-D data spaces and an iterative collaborative filter-
ing procedure for image denoising. Mariral et al. [167]
proposed the use of extending the KSVD-based grayscale
algorithm and a generalized weighted average algorithm for
color image denoising. Protter and Elad [168] extended the
techniques of sparse and redundant representations for image
sequence denoising by exploiting spatio-temporal atoms,
dictionary propagation over time and dictionary learning.
Dong et al. [169] designed a clustering based sparse represen-
tation algorithm, which was formulated by a double-header
sparse optimization problem built upon dictionary learning
and structural clustering. Recently, Jiang et al. [170] proposed
a variational encoding framework with a weighted sparse
nonlocal constraint, which was constructed by integrating
image sparsity prior and nonlocal self-similarity prior into
a unified regularization term to overcome the mixed noise
removal problem. Gu et al. [171] studied a weighted nuclear
norm minimization (WNNM) method with F-norm fidelity
under different weighting rules optimized by non-local self-
similarity for image denoising. Ji et al. [172] proposed a
patch-based video denoising algorithm by stacking similar
patches in both spatial and temporal domain to formulate a
low-rank matrix problem with the nuclear norm.
Cheng et al. [173] proposed an impressive image denoising

518 VOLUME 3, 2015



Z. Zhang et al.: Survey of Sparse Representation

method based on an extension of the KSVD algorithm via
group sparse representation.

The primary purpose of image restoration is to recover
the original image from the degraded or blurred image.
The sparse representation theory has been extensively
applied to image restoration. For example,
Bioucas-Dias and Figueirdo [174] introduced a two-step
iterative shrinkage/thresholding (TwIST) algorithm for image
restoration, which is more efficient and can be viewed as an
extension of the IST method. Mairal et al. [175] presented a
multiscale sparse image representation framework based on
the KSVD dictionary learning algorithm and shift-invariant
sparsity prior knowledge for restoration of color images and
video image sequence. Recently, Mairal et al. [176] pro-
posed a learned simultaneous sparse coding (LSSC) model,
which integrated sparse dictionary learning and nonlocal
self-similarities of natural images into a unified framework
for image restoration. Zoran and Weiss [177] proposed an
expected patch log likelihood (EPLL) optimization model,
which restored the image from patch to the whole image
based on the learned prior knowledge of any patch acquired
byMaximumA-Posteriori estimation instead of using simple
patch averaging. Bao et al. [178] proposed a fast orthogonal
dictionary learning algorithm, in which a sparse image repre-
sentation based orthogonal dictionary was learned in image
restoration. Zhang et al. [179] proposed a group-based sparse
representation, which combined characteristics from local
sparsity and nonlocal self-similarity of natural images to the
domain of the group. Dong et al. [180], [181] proposed a cen-
tralized sparse representation (CSR) model, which combined
the local and nonlocal sparsity and redundancy properties for
variational problem optimization by introducing a concept of
sparse coding noise term.

Here we mainly introduce a recently proposed simple but
effective image restoration algorithm CSR model [180]. For
a degraded image y, the problem of image restoration can be
formulated as

y = Hx+ v (VIII.41)

where H is a degradation operator, x is the original
high-quality image and v is the Gaussian white noise.
Suppose that the following two sparse optimization problems
are satisfied

αx = argmin ‖α‖1 s.t. ‖x− Dα‖22 ≤ ε (VIII.42)

αy = argmin ‖α‖1 s.t. ‖x− HDα‖22 ≤ ε (VIII.43)

where y and x respectively denote the degraded image
and original high-quality image, and ε is a small constant.
A new concept called sparse coding noise (SCN) is defined

vα = αy − αx (VIII.44)

Given a dictionary D, minimizing SCN can make the image
better reconstructed and improve the quality of the image
restoration because x∗ = x̂ − x̃ = Dαy − Dαx = Dvα .

Thus, the objective function is reformulated as

αy = argmin
α
‖y− HDα‖22 + λ‖α‖1 + µ‖α − αx‖1

(VIII.45)

where λ and µ are both constants. However, the value of
αx is difficult to directly evaluate. Because many nonlocal
similar patches are associated with the given image patch i,
clustering these patches via block matching is advisable and
the sparse code of searching similar patch l to patch i in
cluster �i, denoted by αil , can be computed. Moreover, the
unbiased estimation of αx , denoted by E[αx], empirically can
be approximate to αx under some prior knowledge [180], and
then SCN algorithm employs the nonlocal means estimation
method [182] to evaluate the unbiased estimation of αx , that
is, using theweighted average of allαil to approachE[αx], i.e.

θi =
∑
l∈�i

wilαil (VIII.46)

where wil = exp
(
−‖xi − xil‖22/h

)
/N , xi = Dαi, xil = Dαil ,

N is a normalization parameter and h is a constant. Thus, the
objective function VIII.45 can be rewritten as

αy = argmin
α
‖y− HDα‖22 + λ‖α‖1 + µ

M∑
i=1

‖αi − θi‖1

(VIII.47)

where M is the number of the separated patches. In the
j-th iteration, the solution of problem VIII.47 is iteratively
performed by

αj+1y = argmin
α
‖y− HDα‖22 + λ‖α‖1 + µ

M∑
i=1

‖αi − θ
j
i ‖1

(VIII.48)

It is obvious that problem VIII.47 can be optimized by the
augmented Lagrange multiplier method [183] or the iterative
shrinkage algorithm in [184]. According to the maximum
average posterior principle and the distribution of the sparse
coefficients, the regularization parameter λ and constant µ
can be adaptively determined by λ =

2
√
2ρ2
σi

and

µ =
2
√
2ρ2
ηi

, where ρ, σi and ηi are the standard deviations of
the additive Gaussian noise, αi and the SCN signal, respec-
tively. Moreover, in the process of image patches clustering
for each given image patch, a local PCA dictionary is learned
and employed to code each patch within its corresponding
cluster. The main procedures of the CSR algorithm are sum-
marized in Algorithm 16 and readers may refer to litera-
ture [180] for more details.

C. SPARSE REPRESENTATION IN IMAGE CLASSIFICATION
AND VISUAL TRACKING
In addition to these effective applications in image process-
ing, several other fields for sparse representation have been
proposed and extensively studied in image classification and
visual tracking. Since Wright et al. [20] proposed to employ
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Algorithm 16 Centralized Sparse Representation for Image
Restoration

Initialization: Set x = y, initialize regularization param-
eter λ and µ, the number of training iteration T , t = 0,
θ0 = 0.
Step 1: Partition the degraded image into M overlapped
patches.
While t ≤ T do
Step 2: For each image patch, update the corresponding
dictionary for each cluster via k-means and PCA.
Step 3: Update the regularization parameters λ and µ by
using

λ =
2
√
2ρ2

σt
and µ =

2
√
2ρ2

ηt
.

Step 4: Compute the nonlocal means estimation of the
unbiased estimation of αx , i.e. θ

t+1
i , by using Eq. (VIII.46)

for each image patch.
Step 5: For a given θ t+1i , compute the sparse representa-
tion solution, i.e. αt+1y , in problem (VIII.48) by using the
extended iterative shrinkage algorithm in literature [184].
Step 6: t = t + 1
End While
Output: Restored image x = Dαt+1y

sparse representation to perform robust face recognition,
more and more researchers have been applying the sparse
representation theory to the fields of computer vision and
pattern recognition, especially in image classification and
object tracking. Experimental results have suggested that
the sparse representation based classification method can
somewhat overcome the challenging issues from illumination
changes, random pixel corruption, large block occlusion or
disguise.

As face recognition is a representative component of
pattern recognition and computer vision applications, the
applications of sparse representation in face recognition can
sufficiently reveal the potential nature of sparse representa-
tion. The most representative sparse representation for face
recognition has been presented in literature [18] and the
general scheme of sparse representation based classification
method is summarized in Algorithm 17. Suppose that there
are n training samples, X = [x1, x2, · · · , xn] from c classes.
Let Xi denote the samples from the i-th class and the testing
sample is y.
Numerous sparse representation based classification

methods have been proposed to improve the robustness,
effectiveness and efficiency of face recognition. For example,
Xu et al. [9] proposed a two-phase sparse representation
based classification method, which exploited the l2-norm
regularization rather than the l1-norm regularization to
perform a coarse to fine sparse representation based clas-
sification, which was very efficient in comparison with
the conventional l1-norm regularization based sparse repre-
sentation. Deng et al. [185] proposed an extended sparse
representation method (ESRM) for improving the robustness

Algorithm 17 The Scheme of Sparse Representation Based
Classification Method
Step 1: Normalize all the samples to have unit l2-norm.
Step 2: Exploit the linear combination of all the training
samples to represent the test sample and the following
l1-norm minimization problem is satisfied

α∗ = argmin ‖α‖1 s.t. ‖y− Xα‖22 ≤ ε.
Step 3: Compute the representation residual for each class

ri = ‖y− Xiα∗i ‖
2
2

where α∗i here denotes the representation coefficients vec-
tor associated with the i-th class.
Step 4: Output the identity of the test sample y by judging

label(y) = argmini(ri).

of SRC by eliminating the variations in face recognition,
such as disguise, occlusion, expression and illumination.
Deng et al. [186] also proposed a framework of superposed
sparse representation based classification, which emphasized
the prototype and variation components from uncontrolled
images. He et al. [187] proposed utilizing the maximum
correntropy criterion named CESR embedding non-negative
constraint and half-quadratic optimization to present a robust
face recognition algorithm. Yang et al. [188] developed
a new robust sparse coding (RSC) algorithm, which first
obtained a sparsity-constrained regression model based on
maximum likelihood estimation and exploited an iteratively
reweighted regularized robust coding algorithm to solve the
pre-proposed model. Some other sparse representation based
image classification methods also have been developed. For
example, Yang et al. [189] introduced an extension of the
spatial pyramid matching (SPM) algorithm called ScSPM,
which incorporated SIFT sparse representation into the
spatial pyramid matching algorithm. Subsequently,
Gao et al. [190] developed a kernel sparse representation
with the SPM algorithm called KSRSPM, and then proposed
another version of an improvement of the SPM called
LScSPM [191], which integrated the Laplacian matrix with
local features into the objective function of the sparse
representation method. Kulkarni and Li [192] proposed a
discriminative affine sparse codes method (DASC) on a
learned affine-invariant feature dictionary from input images
and exploited theAdaBoost-based classifier to perform image
classification. Zhang et al. [193] proposed integrating the
non-negative sparse coding, low-rank and sparse matrix
decomposition (LR-Sc+SPM) method, which exploited non-
negative sparse coding and SPM for achieving local features
representation and employed low-rank and sparse matrix
decomposition for sparse representation, for image classifica-
tion. Recently, Zhang et al. [194] presented a low-rank sparse
representation (LRSR) learning method, which preserved
the sparsity and spatial consistency in each procedure of
feature representation and jointly exploited local features
from the same spatial proximal regions for image
classification. Zhang et al. [195] developed a structured
low-rank sparse representation (SLRSR) method for image
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classification, which constructed a discriminative dictionary
in training terms and exploited low-rank matrix recon-
struction for obtaining discriminative representations.
Tao et al. [196] proposed a novel dimension reductionmethod
based on the framework of rank preserving sparse learning,
and then exploited the projected samples to make effective
Kinect-based scene classification. Zhang et al. [197]
proposed a discriminative tensor sparse coding (RTSC)
method for robust image classification. Recently, low-rank
based sparse representation became a popular topic such as
non-negative low-rank and sparse graph [198]. Some sparse
representation methods in face recognition can be found in a
review [83] and other more image classification methods can
be found in a more recent review [199].

Mei et al. employed the idea of sparse representation to
visual tracking [200] and vehicle classification [201], which
introduced nonnegative sparse constraints and dynamic tem-
plate updating strategy. It, in the context of the particle filter
framework, exploited the sparse technique to guarantee that
each target candidate could be sparsely represented using the
linear combinations of fewest targets and particle templates.
It also demonstrated that sparse representation can be prop-
agated to address object tracking problems. Extensive sparse
representation methods have been proposed to address the
visual tracking problem. In order to design an accelerated
algorithm for l1 tracker, Li et al. [202] proposed two real-
time compressive sensing visual tracking algorithms based
on sparse representation, which adopted dimension reduction
and the OMP algorithm to improve the efficiency of recovery
procedure in tracking, and also developed a modified version
of fusing background templates into the tracking procedure
for robust object tracking. Zhang et al. [203] directly treated
object tracking as a pattern recognition problem by regarding
all the targets as training samples, and then employed the
sparse representation classification method to do effective
object tracking. Zhang et al. [204] employed the concept
of sparse representation based on a particle filter framework
to construct a multi-task sparse learning method denoted as
multi-task tracking for robust visual tracking. Additionally,
because of the discriminative sparse representation between
the target and the background, Jia et al. [205] conceived a
structural local sparse appearance model for robust object
tracking by integrating the partial and spatial information
from the target based on an alignment-pooling algorithm.
Liu et al. [206] proposed constructing a two-stage sparse
optimization based online visual tracking method, which
jointly minimized the objective reconstruction error and
maximized the discriminative capability by choosing dis-
tinguishable features. Liu et al. [207] introduced a local
sparse appearance model (SPT) with a static sparse dictio-
nary learned from k-selection and dynamic updated basis
distribution to eliminate potential drifting problems in the
process of visual tracking. Bao et al. [208] developed a fast
real time l1-tracker called theAPG-l1 tracker, which exploited
the accelerated proximal gradient algorithm to improve the
l1-tracker solver in [200]. Zhong et al. [209] addressed the

object tracking problem by developing a sparsity-based
collaborative model, which combined a sparsity-based clas-
sifier learned from holistic templates and a sparsity-
based template model generated from local representations.
Zhang et al. [210] proposed to formulate a sparse feature
measurement matrix based on an appearance model by
exploiting non-adaptive random projections, and employed
a coarse-to-fine strategy to accelerate the computational effi-
ciency of tracking task. Lu et al. [211] proposed to employ
both non-local self-similarity and sparse representation to
develop a non-local self-similarity regularized sparse repre-
sentation method based on geometrical structure information
of the target template data set. Wang et al. [212] proposed
a sparse representation based online two-stage tracking
algorithm, which learned a linear classifier based on local
sparse representation on favorable image patches. More
detailed visual tracking algorithms can be found in the recent
reviews [213], [214].

IX. EXPERIMENTAL EVALUATION
In this section, we take the object categorization problem as
an example to evaluate the performance of different sparse
representation based classification methods. We analyze and
compare the performance of sparse representation with the
most typical algorithms: OMP [37], l1_ls [76], PALM [89],
FISTA [82], DALM [89], homotopy [99] and TPTSR [9].

Plenties of data sets have been collected for object cate-
gorization, especially for image classification. Several image
data sets are used in our experimental evaluations.
ORL: The ORL database includes 400 face images taken

from 40 subjects each providing 10 face images [215]. For
some subjects, the images were taken at different times,
with varying lighting, facial expressions, and facial details.
All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position
(with tolerance for some side movement). Each image was
resized to a 56×46 image matrix by using the down-sampling
algorithm.
LFW Face Dataset: The Labeled Faces in the Wild (LFW)

face database is designed for the study of uncon-
strained identity verification and face recognition [216].
It contains more than 13,000 images of faces collected from
the web under the unconstrained conditions. Each face has
been labeled with the name of the people pictured. 1680 of
the people pictured have two or more distinct photos in the
database. In our experiments, we chose 1251 images from
86 peoples and each subject has 10-20 images [217].
Each image was manually cropped and was resized to
32×32 pixels.
Extended YaleB Face Dataset: The extended YaleB

database contains 2432 front face images of 38 individuals
and each subject having around 64 near frontal images under
different illuminations [218]. The main challenge of this
database is to overcome varying illumination conditions and
expressions. The facial portion of each original image was
cropped to a 192×168 image. All images in this data set for

VOLUME 3, 2015 521



Z. Zhang et al.: Survey of Sparse Representation

FIGURE 5. Classification accuracies of using different sparse representation based classification methods versus varying values of the
regularization parameter λ on the (a) ORL (b) LFW (c) Coil20 and (d) Fifteen scene datasets.

our experiments simply resized these face images to
32×32 pixels.
COIL20 Dataset: Columbia Object Image Library

(COIL-20) database consists of 1,440 size normalized gray-
scale images of 20 objects [219]. Different object images
are captured at every angle in a 360 rotation. Images of the
objects were taken from varying angles at pose intervals of
five degrees and each object has 72 images.
Fifteen Scene Dataset: This dataset contains

4485 images under 15 natural scene categories pre-
sented in literature [220] and each category includes
210 to 410 images. The 15 scenes categories are office,
kitchen, living room, bedroom, store, industrial, tall building,
inside cite, street, highway, coast, open country, mountain,
forest and suburb. A wide range of outdoor and indoor scenes
are included in this dataset. The average image size is around
250 × 300 pixels and the spatial pyramid matching features
are used in our experiments.

A. PARAMETER SELECTION
Parameter selection, especially selection of the regularization
parameter λ in different minimization problems, plays an
important role in sparse representation. In order to make
fair comparisons with different sparse representation
algorithms, performing the optimal parameter selection
for different sparse representation algorithms on different
datasets is advisable and indispensable. In this subsection,
we perform extensive experiments for selecting the best
value of the regularization parameter λ with a wide range of
options. Specifically, we implement the l1_ls, FISTA,DALM,
homotopy and TPTSR algorithms on different databases to
analyze the importance of the regularization parameter. Fig. 5
summarizes the classification accuracies of exploiting differ-
ent sparse representation based classification methods with
varying values of regularization parameter λ on the two face
datasets, i.e. ORL and LFW face datasets, and two object
datasets, i.e. COIL20 and Fifteen scene datasets. On the ORL
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TABLE 1. Classification accuracies (mean classification error rates ± standard deviation %) of different sparse representation algorithms with different
numbers of training samples. The bold numbers are the lowest error rates and the least time cost of different algorithms.

and LFW face datasets, we respectively selected the first five
and eight face images of each subject as training samples and
the rest of image samples for testing. As for the experiments
on the COIL20 and fifteen scene datasets, we respectively
treated the first ten images of each subject in both datasets
as training samples and used all the remaining images as test
samples. Moreover, from Fig. 5, one can see that the value
of regularization parameter λ can significantly dominate the
classification results, and the values of λ for achieving the
best classification results on different datasets are distinctly
different. An interesting scenario is that the performance
of the TPTSR algorithm is almost not influenced by the
variation of regularization parameter λ in the experiments
on fifteen scene dataset, as shown in Fig. 5(d). However, the
best classification accuracy can be always obtained within
the range of 0.0001 to 1. Thus, the value of the regularization
parameter is set within the range from 0.0001 to 1.

B. EXPERIMENTAL RESULTS
In order to test the performance of different kinds of
sparse representation methods, an empirical study of exper-
imental results is conducted in this subsection and seven
typical sparse representation based classification methods are
selected for performance evaluation followed with extensive
experimental results. For all datasets, following most previ-
ous published work, we randomly choose several samples of
every class as training samples and used the rest as test

samples and the experiments are repeated 10 times with
the optimal parameter obtained using the cross validation
approach. The gray-level features of all images in these data
sets are used to perform classification. For the sake of com-
putational efficiency, principle component analysis algorithm
is used as a preprocessing step to preserve 98% energy of
all the data sets. The classification results and computational
time have been summarized in Table 1. From the experi-
mental results on different databases, we can conclude that
there still does not exist one extraordinary algorithm that
can achieve the best classification accuracy on all databases.
However, some algorithms are noteworthy to be paid much
more attention. For example, the l1_ls algorithm in most
cases can achieve better classification results than the other
algorithms on the ORL database, and when the number of
training samples of each class is five, the l1_ls algorithm can
obtain the highest classification result of 95.90%. The TPTSR
algorithm is very computationally efficient in comparison
with other sparse representation with l1-norm minimization
algorithms and the classification accuracies obtained by the
TPTSR algorithm are very similar and sometimes even
better than the other sparse representation based classification
algorithms.

The computational time is another indicator for measuring
the performance of one specific algorithm. As shown
in Table 1, the average computational time of each algorithm
is shown at the bottom of the table for one specific number of
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training samples. Note that the computational time of OMP
and TPTSR algorithms are drastically lower than that of other
sparse representation with l1-norm minimization algorithms.
This is mainly because the sparse representation with
l1-norm minimization algorithms always iteratively solve
the l1-norm minimization problem. However, the OMP and
TPTSR algorithms both exploit the fast and efficient least
squares technique, which guarantees that the computational
time is significantly less than other l1-norm based sparse
representation algorithms.

C. DISCUSSION
Lots of sparse representation methods have been available in
past decades and this paper introduces various sparse
representation methods from some viewpoints, including
their motivations, mathematical representations and the main
algorithms. Based on the experimental results summarized
in Section IX, we have the following observations.

First, a challenging task of choosing a suitable regulariza-
tion parameter for sparse representation should make further
extensive studies. We can see that the value of the regulariza-
tion parameter can remarkably influence the performance of
the sparse representation algorithms and adjusting the param-
eters in sparse representation algorithms requires expensive
labor. Moreover, adaptive parameter selection based sparse
representation methods is preferable and very few methods
have been proposed to solve this critical issue.

Second, although sparse representation algorithms have
achieved distinctly promising performance on some
real-world databases, many efforts should be made in
promoting the accuracy of sparse representation based clas-
sification, and the robustness of sparse representation should
be further enhanced. In terms of the recognition accuracy, the
algorithms of l1_ls, homotopy and TPTSR achieve the best
overall performance. Considering the experimental results of
exploiting the seven algorithms on the five databases, the
l1_ls algorithm has eight highest classification accuracies,
followed by homotopy and TPTSR, in comparison with other
algorithms. One can see that the sparse representation based
classification methods still can not obtain satisfactory results
on some challenge databases. For example, all these repre-
sentative algorithms can achieve relatively inferior experi-
mental results on the LFW dataset shown in Subsection IX-B,
because the LFWdataset is designed for studying the problem
of unconstrained face recognition [216] and most of the face
images are captured under complex environments. One can
see that the PALM algorithm has the worst classification
accuracy on the LFW dataset and the classification accuracy
even decreases mostly with the increase of the number of
the training samples. Thus, devising more robust sparse
representation algorithm is an urgent issue.

Third, enough attention should be paid on the
computational inefficiency of sparse representation with
l1-norm minimization. One can see that high computational
complexity is one of the most major drawbacks of the
current sparse representation methods and also hampers its

applications in real-time processing scenarios. In terms of
speed, PALM, FISTA and DALM take much longer time to
converge than the other methods. The average computational
time of OMP and TPTSR is the two lowest algorithms. More-
over, compared with the l1-regularized sparse representation
based classification methods, the TPTSR has very competi-
tive classification accuracy but significantly low complexity.
Efficient and effective sparse representation methods are
urgently needed by real-time applications. Thus, developing
more efficient and effective methods is essential for future
study on sparse representation.

Finally, the extensive experimental results have demon-
strated that there is no absolute winner that can achieve
the best performance for all datasets in terms of classifica-
tion accuracy and computational efficiency. However, l1_ls,
TPTSR and homotopy algorithms as a whole outperform the
other algorithms. As a compromising approach, the OMP
algorithm can achieve distinct efficiency without sacrificing
much recognition rate in comparison with other algorithms
and it also has been extensively applied to some complex
learning algorithms as a function.

X. CONCLUSION
Sparse representation has been extensively studied in recent
years. This paper summarizes and presents various avail-
able sparse representation methods and discusses their
motivations, mathematical representations and extensive
applications. More specifically, we have analyzed their rela-
tions in theory and empirically introduced the applications
including dictionary learning based on sparse representation
and real-world applications such as image processing, image
classification, and visual tracking.

Sparse representation has become a fundamental tool,
which has been embedded into various learning systems
and also has received dramatic improvements and unprece-
dented achievements. Furthermore, dictionary learning is
an extremely popular topic and is closely connected with
sparse representation. Currently, efficient sparse represen-
tation, robust sparse representation, and dictionary learning
based on sparse representation seem to be the main streams
of research on sparse representation methods. The low-rank
representation technique has also recently aroused intensive
research interests and sparse representation has been
integrated into low-rank representation for constructing more
reliable representation models. However, the mathematical
justification of low-rank representation seems not to be
elegant as sparse representation. Because employing the ideas
of sparse representation as a prior can lead to state-of-the-
art results, incorporating sparse representation with low-rank
representation is worth further research. Moreover, subspace
learning also has been becoming one of the most prevailing
techniques in pattern recognition and computer vision. It is
necessary to further study the relationship between sparse
representation and subspace learning, and constructing more
compact models for sparse subspace learning becomes one
of the popular topics in various research fields. The transfer
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learning technique has emerged as a new learning framework
for classification, regression and clustering problems in data
mining and machine learning. However, sparse representa-
tion research still has been not fully applied to the transfer
learning framework and it is significant to unify the sparse
representation and low-rank representation techniques into
the transfer learning framework to solve domain adaption,
multitask learning, sample selection bias and covariate shift
problems. Furthermore, researches on deep learning seems
to become an overwhelming trend in the computer vision
field. However, dramatically expensive training effort is the
main limitation of current deep learning technique and how
to fully introduce current sparse representation methods into
the framework of deep learning is valuable and unsolved.

The application scope of sparse representation has emerged
and has been widely extended to machine learning and
computer vision fields. Nevertheless, the effectiveness and
efficiency of sparse representation methods cannot perfectly
meet the need for real-world applications. Especially, the
complexities of sparse representation have greatly affected
the applicability, especially the applicability to large scale
problems. Enhancing the robustness of sparse representa-
tion is considered as another indispensable problem when
researchers design algorithms. For image classification, the
robustness should be seriously considered, such as the robust-
ness to random corruptions, varying illuminations, outliers,
occlusion and complex backgrounds. Thus, developing an
efficient and robust sparse representation method for sparse
representation is still the main challenge and to design a more
effective dictionary is being expected and is beneficial to the
performance improvement.

Sparse representation still has wide potential for various
possible applications, such as event detection, scene
reconstruction, video tracking, object recognition, object
pose estimation, medical image processing, genetic expres-
sion and natural language processing. For example, the study
of sparse representation in visual tracking is an important
direction andmore depth studies are essential to future further
improvements of visual tracking research.

In addition, most sparse representation and dictionary
learning algorithms focus on employing the l0-norm or
l1-norm regularization to obtain a sparse solution. However,
there are still only a few studies on l2,1-norm regularization
based sparse representation and dictionary learning
algorithms. Moreover, other extended studies of sparse repre-
sentation may be fruitful. In summary, the recent prevalence
of sparse representation has extensively influenced different
fields. It is our hope that the review and analysis presented in
this paper can help and motivate more researchers to propose
perfect sparse representation methods.
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